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SUMMARY

A prototype of an expert system has been developed which
applies qualitative or model-based reasoning to the task of
post-test analysis and diagnosis of data resulting from a rocket
engine firing. A combined component-based and process theory
approach is adopted as the basis for system modeling. Such an
approach provides a framework for explaining both normal and
deviant system behavior in terms of individual component
functionality. The diagnosis function is applied to digitized
sensor time-histories generated during engine firings. The
generic system is applicable to any liquid rocket engine but has
been adapted specifically in this work to the Space Shuttle Main
Engine (SSME). The system is applied to idealized data
resulting from turbomachinery malfunction in the SSME.
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1. INTRODUCTION

The task of post-test analysis and diagnosis of data
generated during rocket engine firings requires considerable
labor by a team of experts. Data in the form of sensor
histories displayed in graphical formats are perused to
determine if the engine firing was “as expected" or anomalous. -
If an anomaly is suspected, attempts are made to identify the
cause of the anomaly. When engine firings are conducted on a
two-to-three day cycle, the team of experts can be occupied

almost continuously in data review - these same experts are
normally urgently needed to perform other tasks at the time of
the data review. An exacerbation of the manpower problem is

caused when experts retire or otherwise leave the team - their
replacement is difficult.

To help alleviate the manpower problem associated with data
review, an automated system is needed to provide assistance to
the experts. Such a system would be implemented on a digital
computer, would be capable of analyzing digitized test data -
identifying normal and anomalous firing data, and would Dbe
capable of formulating hypotheses about the cause of the
anomalous results. Furthermore, the system should be capable of
justifying and explaining the stated hypotheses and recommending
further actions to better jdentify the causes of the anomalies.

Ccurrent research in the development of diagnostic systems
for rocket engine firing focuses on such approaches as expert
systems [1,2], neural networks [3-6], and signal processing
[7-9]. Traditional expert systems developed from the
associational knowledge of human experts tend to have a very
narrow scope both in terms of the extent of the domain and range

of problem solving activities they can handle. Also, such
systems do not provide sufficient flexibility for system
modification - modification of the object of interest often

calls for the development of a new expert system.

Model-based approaches ([10-12] which integrate fundamental
principles, causal and common sense knowledge are capable of
overcoming the 1limitations of traditional expert systems.
Several recent applications of qualitative or model-based
diagnostic approaches appear applicable to the task at hand -
the analysis and diagnosis of rocket engine data [13,14].

In what follows, a description of the model-based approach
is discussed in a generic sense prior to application of the
concept to the SSME system.



2.0 REVIEW OF DIAGNOSTIC APPROACHES

Before focusing on the particular application (SSME) and
diagnostic system (EDIS) of primary interest here, a general
review of the approaches other researchers have pursued seenms
appropriate. Relevant "Artificial Intelligence" (AI) literature
includes previous work on knowledge-based analysis and diagnosis
of the SSME and other space-related engineering systems. 1In
what follows, approaches taken by researchers considering
diagnostic systems similar to the SSME are summarized.

2.1 Generic Diagnostic Paradigm

Work on diagnostic systems by Davis [13] and Genesereth
[(15] and promising results in reasoning from first principle
(16] have made model-based reasoning an attractive option for
diagnostic systems. In particular, model-based reasoning allows
diagnosis to be performed without explicit fault assumptions. A
fault is simply characterized by a component not behaving as
desired without reference to a specific aberration, see Davis
[17]. Constraints are used to specify correct component
behavior. A constraint 1is a qualitative or quantitative
relationship between the parameters which describe the behavior
of a component. A component fault can thus be defined as the
violation of one or more constraints associated with the
component. Model-based diagnosis using constraint propagation
potentially covers all possible faults of a device, not only
those explicitly enumerated by an expert. Diagnostic
completeness 1is, however, 1limited by the accuracy and
completeness of the model [17]. For example, parasitic causal
pathways may exist between components, such as heat transport or
crosstalk, which cannot be detected if the relevant kind of
component interaction has not been modeled.

Diagnostic paradigms have been formulated based on the
availability of a model which contains device structure, i.e., a
decomposition of the device into interconnected components, and
behavior constraints for all components of the device. For
example, Davis [17] introduced "“constraint suspension" and
Genesereth’s DART [15]) program uses the "resolution residue"
procedure. Most diagnostic procedures follow the Generate -
Test - Discriminate paradigm. In the first step, fault
hypotheses are generated. A hypothesis may explicitly enumerate
a specific set of components which are assumed to be faulty, or
a hypothesis may be implicitly defined by a set of components at
least one of which must be faulty. The set of hypotheses must
be complete but it will, in general, contain too many
candidates, although most designs try to keep the set as small
as possible. Hypothesis testing eliminates those candidate
hypotheses which cannot account for all observed symptoms.



Theoretically, it is possible to combine hypothesis generation
and testing, i.e. to generate viable hypotheses only, but in
practice it often proves simpler to separate these two steps.
If several hypotheses survive testing, then more data need to be
observed to discriminate between them. Electronic
troubleshooting systems must determine the test which promises
to reveal the most new information. The FIS system [18], the
IN-ATE approach [19], and the general diagnostic engine (GDE)
method [20] use probabilistic methods to propose the next "best"
test. Approaches based on the minimum entropy principle, such as
GDE, appear to be best. Note, however, that for SSME post-test
analysis no further tests are possible.

DeKleer and Williams [20] have presented GDE, a method for
diagnosing single and multiple faults in systems which can be
modeled by interconnected modules, each characterized by
constraints between input and output parameters. Essentially the
same method has also been proposed by Reiter [21] except that
his derivation is based on formal 1logic. GDE predicts values
for device parameters given some known values, e.g., measured or
input values, by propagating the known values through the
component interconnections and constraint expressions. Note that
constraints must be non-directional, i.e. the system must be
able to reason from inputs to outputs as well as from outputs to
inputs. Davis [13], for example, supplies "simulation" and
"inference" rules for forward and backward propagation,
respectively.

GDE detects a "symptom" when at least two different values
are predicted (or determined) for the same parameter based on
different input or measured values. Value prediction depends on
the assumption that each component which was traversed during
constraint propagation enforces its constraints correctly.
Existence of a symptom indicates that at least one constraint
must be violated and thus one component involved in the symptom
must be faulty. A component is involved in a symptom if it lies
on a propagation path which 1leads to the symptom, i.e. its
behavior influences the predicted value. A symptom gives rise
to a set of fault hypotheses. GDE represents hypotheses
implicitly. Sets of components which contain at least one
fault, named "conflicts" or "conflict sets", are generated by
combining all components which were involved in creating the
symptom. Hypotheses are derived from these conflict sets by
forming sets of components such that at least one member of each
conflict set is represented in the hypothesis set. If a
hypothesis exists which contains only one component then a
single fault in this component can account for all symptoms.
Otherwise multiple faults must be present.

The diagnostic paradigm exemplified by GDE is very powerful



but some caution is appropriate before recommending it for every
diagnostic application. DeKleer and Williams {[20] point out
that complete prediction of component and system behavior is
currently beyond the state-of-the-art. The SSME (22] is a good
example of a complex dynamic system whose behavior is very
difficult to model and to predict. A large numeric
power-balance model (PBM) [23) is used for post-test data
reduction and pre-test performance prediction. The PBM searches
iteratively for a set of consistent engine parameter values. It
is valid only for normal operation and some small deviations.
Clearly, such a model cannot be used for constraint propagation,
because it cannot propagate anomalous parameter values and
because it cannot perform local propagation at each module.

2.2 Reduced Prediction Models

Given that the SSME components cannot be modeled by exact
constraints, other, less accurate methods of modeling have to be
explored. Qualitative modeling [16] eliminates the need for
exact numeric constraint equations. Only qualitative parameter
values, such as normal, low, high, and their trends, such as
stable, increasing, decreasing, are considered. Several systems
have been developed which can perform system simulation wusing
qualitative models only, see [16]). In [24], for example, DeKleer
and Brown define qualitative models for components as sets of
qualitative state - confluence pairs. Qualitative states loosely
correspond to operating regions of devices governed by different
laws. Confluences are equations constraining qualitative values
of parameters, based on a special gqualitative calculus.
Confluences and qualitative states are usually derived from
conventional mathematical models.

Forbus [25] presents another approach to qualitative
modeling which is process-centered instead of
component-centered. A process relates the parameters of
several interacting objects (components). For example, a heat
flow process is instantiated when a heat source, a heat sink,
and a heat path are present and properly aligned.

Qualitative models have the disadvantage that counteracting
influences lead to multiple possible conclusions about the
behavior of a parameter value. For example, if two input
parameters are added to produce the output and the signs ("high"
or "low") of the inputs do not agree, the sign of the output
cannot be predicted uniquely. The same holds true for opposite
trends at the inputs. Predictive ability is limited because the
relative strengths of conflicting influences are not
represented.

Subsequently, researchers have modified the concept of



qualitative modeling by replacing gqualitative confluences by
simplified analytic equations which allow exact comparison of
conflicting influences and the use of known component
parameters, such as efficiency coefficients. Govinderaj (26]
describes a qualitative approximation methodology using
"moderate fidelity simulators". System components are modeled

using simplified dynamical equations abstracted from continuity -

and compatibility conditions. Biswas [10] describes another
modeling methodology using analytic equations which approximate
actual device behavior.

Even less information is required for causal modeling.
Causal models, in their simplest form, only describe the causal
relationships between aberrations of component behavior.
Component behavior is abstracted into function and the
functional model merely describes which functions, and therefore
which components, depend on each other. All that can be said
about a pump, for example, is that its function is to create a
pressure increase, whether it performs this function or not, and
which subsequent function depends on the correct functioning of
the pump. An extended causal model will enumerate types of
anomalies of functions and how anomalies in one component cause
anomalies in the functions dependent on it. In a staged pump
system, for example, reduced pump performance in the first
stage will increase pump workload in the second stage.

Still more detail can be incorporated into a causal model
if deviations of parameter values are considered instead of
deviations in overall function. For example, anomalous pressure
at the input of a pipe will result in anomalous pressure at its
output. Low input pressure to a pump leads to low output
pressure unless a controller increases the power driving the
pump. This detailed causal model approaches the capabilities of
a qualitative model, except that it describes deviations from a
norm instead of absolute behavior. Govinderaj’s system [26] also
reasons about deviations from steady-state but uses quantitative
equations. He advocates his approach for applications involving
large complex dynamic systems such as a marine steam power
plant.

A most interesting aspect of functional models is the
possibility to switch between levels of abstraction and relate
the functioning of a component to the functioning of the
enclosing module. The intrinsic function of a pump is to expel
fluid at a pressure higher than at the intake, while in the
context of the SSME, the function of the pump may be to push
fuel through the cooling circuits at a high enough rate.
Sembugamoorthy and Chandrasekaran [27] and Bylander ([28] have
presented an approach to this problem but more needs to be done.



2.3 Alternative Diagnostic Methods

As suggested by the classification scheme for diagnostic
systems delineated by Milne ([12] we will discuss compiled
knowledge systems in the following, having completed the
presentation of structural, behavioral, and functional models.

Abstracting device behavior and function beyond causal
models leads to M"compiled" diagnostic systems which explicitly
associate symptoms with fault hypotheses. Heuristic, pattern
matching, or associational systems belong to this category.
Most commercial expert systems are based on compiled heuristics
and specialized software tools have been developed to help build
them. Frequently, heuristics are stored as production rules.
The validity of a compiled system depends on completeness of the
rule base and exhaustive enumeration of possible faults. Rules
can be created by experts or extracted from case data.

The advantages of heuristic based systems are that they can
deal with common faults rapidly and economically, that they do
not need good models of the device, and that the user group is
more likely to accept a knowledge-based system if they were
involved in its creation. The disadvantage of expert systems
based on application-specific heuristics are that they only
cover explicitly enumerated faults, that they are difficult to
maintain and extend, and that they apply only to a specific
application.

Continuing research on compiled knowledge systems has
generated approaches to generalize and reuse heuristics from one
application to another, see, for example, Malin and Lance [29].
Generalization of heuristics which are tied to particular
components requires reversing the symptom-fault heuristic to a
fault-symptom prediction format. Component models which are to
produce heuristic rules thus need to facilitate enumerating the
possible faults of a component and to predict the effects of
those faults on component behavior. These models differ from
the models discussed above in that they contain knowledge about
specific faults and effects of faults. Of course, they are also
used differently, i.e. to create heuristic rules which embody
symptom-fault associations.

2.4 Use of Fault Models

Fault models, i.e. descriptions of how the behavior of a
component changes given a fault has occurred, have the potential
to assist in selecting fault candidates, testing fault
hypotheses, and refining fault hypotheses. Substantial
differences in the use of fault models warrants a more detailed
analysis of the utility of fault models. Some model-based



systems, such as GDE, operate totally without resorting to the
use of fault models. They operate under the assumption that
hypotheses can be pruned and refined by collecting additional
data until a unique fault (or set of faults) has been
determined.

Fault models may be used to determine if a candidate
component, in fact, has a failure mode which can account for the
observed symptoms. This method can be applied in model-based
systems when several competing hypotheses remain but no further
data can be collected to discriminate between them. At this
point some assumptions must be made in order to proceed with the
diagnosis. Using fault models to eliminate hypotheses implies
the assumption that the enumerated fault modes are more likely
to occur than other, as yet unconceived, faults.

Fault models can also refine a unique hypothesis by

postulating a particular fault in a component. Generic
diagnosis, such as the GDE methodology, pinpoints only a
component, but does not identify how it has failed. If the

actual fault is of interest, or if the fault is to be localized
more precisely within the component but no detailed component
model is available, then fault models can be matched against the
observed symptom.

2.5 Mixed Paradigm Systems

Model-based and heuristic-based diagnostic systems each
have unique advantages and disadvantages as discussed above. To
incorporate both paradigms into one system could potentially
combine the strengths of each approach. Establishing smooth
cooperation between these divergent methods poses some problems,
however. Model-based systems execute in a sequential,
algorithmic manner, where hypotheses are first generated, then
tested, and finally discriminated. Heuristic rule-based systems
for the most part operate in a goal-driven associational
fashion. Hypotheses are created one at a time; each is
evaluated separately using observations or intermediate
inferences 1left over from processing a previous hypothesis.
Hypotheses may be discarded any time the conditions of a rule
are satisfied by some pattern in the data.

Typically, systems which incorporate model and
heuristic-based reasoning alternatively execute two separate
reasoning mechanisms for each paradigm. For example, Fink [30)

describes the IDM (integrated diagnostic model) system which
first executes a heuristic module and then switches to a
model-based module when the heuristics fail to provide a
diagnosis. A conversion mechanisms is provided which allows
sharing of information between the two modules. Another



approach, specified by Pazzani and Brindle ([31), calls on
heuristic rules to hypothesize faults and device models to
confirm or deny those hypotheses. Pflueger ([32] mixes
experiential diagnosis based on associational rules and
model-based reasoning using a "logic function model" and
constraint propagation and suspension. Rules are used to
accelerate recognition of frequent faults and in cases where
components cannot be adequately modeled.



3. DESCRIPTION OF SPACE SHUTTLE MAIN ENGINE SYSTEM

The Space Shuttle Main Engine (SSME) is a reusable, high
performance, liquid-propellant rocket engine with variable
thrust. Figure 1 contains a schematic diagram of the main
components of the engine. The engine burns liquid oxygen and
liquid hydrogen at a mixture ratio of 6:1 to produce a sea
level thrust of 375,000 pounds. The chamber pressure is
approximately 3000 psia and the SSME is throttleable over a
range of 65 to 109 percent of rated power level. The engine is
regarded as a high-performance engine due to the high chamber
pressure and the use of a staged combustion power cycle.

In the SSME staged combustion power cycle, the propellants
are partially burned at 1low mixture ratio, very high pressure,
and relatively low temperature in the preburners to produce
hydrogen-rich gas to power the high-pressure turbopumps. This
hydrogen-rich steam is then routed to the main injector where it
is injected along with additional oxidizer and fuel into the
main combustion chamber. Hydrogen fuel is used to cool all
combustion devices directly exposed to high-temperature products
of combustion. An electronic controller automatically performs
checkout, startup, mainstage, and shutdown operations.

3.1 Major Components

Key components to the SSME system are four turbopumps, two
low pressure and two high pressure:

1) low-pressure fuel turbopump (LDFTP)
2) low-pressure oxidizer turbopump (LPOTP)
3) high-pressure fuel turbopump (HPFTP)
4) high-pressure oxidizer turbopump (HPOTP)

These pumps are identified in Fig. 1.

The LPFTP and LPOTP are axial-flow pumps that operate at
relatively low speeds and provide the pressure increase required
at the inlets of the respective high-pressure turbopumps.

The HPFTP is a three-stage, centrifugal-flow pump driven
directly by a two-stage hot-gas turbine. The HPOTP consists of
two centrifugal-flow pumps on a common shaft and driven directly
by a two-stage hot-gas turbine. The main pump supplies oxidizer
to the main combustion chamber, the LPOTP turbine, and the
preburner oxidizer pump. The preburner oxidizer pump raises the
pressure of the oxidizer and supplies it to the fuel and
oxidizer preburners.
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The hot-gas manifold (HGM) is the structural backbone of
the SSME engine system in that it supports two preburners, two
high-pressure pumps, the main injector and the main combustion
chamber. It interconnects the fuel and oxidizer preburners (FPB
and OPB) to the main chamber injector. The FPB and OPB generate
fuel-rich gases that power the HPFTP and HPOTP.

The main combustion chamber (MCC) 1is attached to the HGM
and consists of an internal coolant 1liner and an external
structural jacket. The nozzle is bolted to the MCC.

In addition to the items mentioned above, the SSME key
components are connected by various interconnects: main
propellant articulating ducts, fluid interface lines, and
component interconnects. These interconnects contain important
valves such as the main oxidizer valve (MOV), main fuel valve
(MFV), fuel preburner oxidizer valve (FPOV), oxidizer preburner
oxidizer valve (OPOV), and the chamber coolant valve (CCV).

For simplicity, the SSME system considered in this work has
been simplified by omitting the pogo suppression system, the
propellant tank pressurization system and certain minor
propellant ductwork - none of these omissions change the basic
operation of the system. The simplified system is illustrated
in Fig. 2.

For the'purposes of system modeling, these components need
more definition. This definition is provided in Section 4.3.

3.2 Interconnectivity

The interconnectivity of the SSME system key components is
illustrated schematically in Fig. 2. As can be seen the
turbines and pumps are directly (mechanically) connected, the
preburners are directly connected to the respective turbines and
all other components are connected by propellant ducts.
Precise statements of interconnectivity are described in Section
4.4.

3.3 Test Data

Test data from SSME engine firings are recorded as analog
signals on magnetic tape and later digitized and stored in files
on hard disks. The data is in the form of time-histories of
individual sensor output. The EDIS system accesses these
digitized data files and performs diagnostic functions by
comparing data values with expected or calculated values.

Simple temperature, pressure, and shaft speed

11
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time-histories from a typical SSME static firing are illustrated
in Figures 3, 4, and 5. As can be seen, the data contains
engine start, mainstage, and shutdown phases. Current EDIS
operation is restricted to consideration of only the mainstage
of operation.

13 .
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4. ENGINE DATA INTERPRETATION SYSTEM (EDIS) DESCRIPTION

4.1 Diagnostic Paradigm

Goals - Selection of a diagnostic paradigm to be integrated
into the SSME data review process was constrained by a number of
goals specified at the outset of the project. The finished -
system was to contain generic propulsion and engine operation
knowledge and to be configurable for various engines and engine
variations. The SSME itself is undergoing continual
modifications which must be accounted for by a diagnostic
system. The diagnostic operation should be easy to modify and
upgrade in order to provide a stable platform for future
enhancements. The system should be able to explain its
reasoning steps in terms and formats familiar to the user. The
reasoning process should be controlled by an explicit strategy
module which affords the user the opportunity to change and
direct diagnostic reasoning. The system should be able to use
available numeric engine models and records of past engine
performance. The diagnostic paradigm developed in this work
addresses these issues. It will be described below.

Specific Considerations - Diagnosis of the SSME differs in
some important aspects from diagnosis of devices as commonly
reported in the literature. The SSME is a complex system, and
therefore difficult to model, not because it has a large number
of components but because the thermodynamic processes are
non-linear and coupled, and because some of its parameters are
requlated by an engine controller. The controller will not
allow deviations of controlled parameters within the limits of
its capability. Deviations will show up at the actuated
variables instead.

Testing an SSME is very complicated, labor-intensive, and
expensive. It is not possible to repeat a test to get more or
different measurements due to the limited 1life of individual
components and the unique conditions surrounding each test. The
question of selecting additional points to probe is mute. To
offset the lack of additional measurements an unusually large
number of parameters are measured during each test. In many
cases redundant instrumentation measures the same parameter.
Access to an almost complete set of test data is beneficial.
Nevertheless, the amount of data recorded during one test makes
it difficult for the reviewers to select relevant information
from the bulk of data.

Due to the lack of a simple and accurate engine model, the
data review process is largely based on comparing test data to
records of previous tests, to average and normal variation data,
and to absolute limit data. These comparison data are stored in
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databases and can be plotted for visual comparison during the
review process. Some of the historic data records were measured
on engines which turned out to be defective. These records can
be compared to new records when the same fault is suspected to
be present in the current test. Available numeric engine models
are executed in order to quantitatively characterize engine and
turbomachinery performance and sometimes to predict effects of
faults. Fault prediction is limited to small fluid and gas
leaks and pipe obstructions.

Diagnosis is performed in the context of the data review

process only, 1i.e. off-line. Real-time operation of the
diagnostic system is not envisioned at this time, especially
since interaction with review personnel is required. Ways of

adapting the diagnostic paradigm to on-line monitoring and
diagnosis may be investigated later.

Design - The SSME review process is composed of several
tasks. First, test data are inspected to detect data anomalies.
Anomalies are then characterized according to whether they are
value, 1i.e. static, or dynamic deviations, whether they occur
during start-up, main-stage, or shutdown, and whether they are
consistent or erratic. Anomaly explanation is based on the
experience that anomalies can be caused by sensor problems, data
manipulation and presentation artifacts, and by actual
engine-related causes. The SSME will produce slightly different
data at every test because of random variations, because of wear
in the turbo-machinery, and because of replaced turbo-machinery.
Actual engine problems can be related to turbo-machinery alone
or to faults somewhere else in the engine. Finally, engine
behavior may deviate from the norm because of changes in
throttle control demanded by special test objectives.

A knowledge-based system to support the review process must
take all these real and pseudo-faults into account when
interpreting data anomalies. Our design calls for the following
steps. Anomaly detection, verification, and fault diagnosis.
Anomaly verification eliminates deviations due to test
objectives, data manipulation, random variations, and sensor
problems from consideration. Fault diagnosis finds
turbo-machinery and general engine faults. At this point only
fault diagnosis has been developed in detail. The diagnostic
method is described in the next section.

The above described method of first classifying anomalies
into one of several categories is an example of diagnosis by
successive refinement or focusing. Chandrasekaran ([33] has
identified hierarchical, successive refinement as one of a few
generic reasoning methods. Hierarchical diagnosis (or problem
solving in general) is commonly used by human experts [34]
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because it reduces the complexity of diagnostic search. The
diagnostic method loses some generality, however, when anomaly
explanations are separated into classes. Constraint propagation
techniques, for example, can find multiple faults only under the
condition that a single complete model exists which fully
describes the system to be diagnosed. Unfortunately, it is hard
to imagine a model which can combine physical descriptions,
control variations, and data manipulation procedures. Sensor
behavior could be incorporated fairly easily, though.

Method - The diagnostic procedure is compartmentalized into
hypothesis generaticn, testing, and discrimination. The
architecture of the diagnostic system, see Section 4.2, provides
means to explicitly represent anomalies, hypotheses, and
decisions about hypotheses, as well as means to dynamically
schedule knowledge sources. These architectural features make
it possible to combine and coordinate various diagnostic
paradigms. For example, hypotheses can be created by a
constraint propagation mechanism as in GDE (a], by heuristic
rules contributed by a human expert, or by rules induced from
exhaustive fault simulation. In every situation the most
appropriate paradigm can be chosen in order to maximize system
performance. In addition, hypotheses can be formulated and
examined with the help of numeric engine models and records of
previous test data.

Constraint-based diagnosis based on a causal model of the
SSME is the primary method which ensures maximum fault coverage.
In Section 4.3 we will present the constraint propagation
mechanism and the qualitative model in detail. Heuristic rules
acquired from human experts are included to serve two purposes.
Rules are able to identify common faults quickly and they can be
applied to discriminate between hypotheses when not enough data
are available to disambiguate the diagnosis. Moreover, we plan
to incorporate a robust rule acquisition mechanism which will
allow experts and prospective users to add heuristics to the
system. This will, we hope, increase acceptance of the system
for routine use.

Hypothesis Generation - Constraint propagation in the
qualitative model and heuristic rules generate hypotheses.
Hypotheses created by constraint propagation are consistent with
the observed symptoms but not necessarily with the expected
fault modes of components. Hypotheses constructed by heuristic
rules may not be consistent with the symptoms or the fault
modes. Their validity depends totally on the quality, i.e.
correctness, consistency, and completeness, of the expertise
incorporated in the rules. Quality has to be assured during the
knowledge acquisition process.
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Hypothesis Testing - The validity of hypotheses created by
constraint propagation depends on the accuracy of the
qualitative model. Some hypotheses produced by a model of
little detail can be eliminated when a more detailed model is
consulted. For example, hypotheses generated from a model based
on qualitative relations only, may be tested with the help of a
simplified quantitative model which characterizes anomalies and
behavior more accurately. Chances of eliminating wvalid
hypotheses are negligible unless the model is overly simplified.
Tests may also be  based on physical plausibility, e.gq.
conservation laws. For example, a component cannot exhibit a
fault mode where energy is created.

Hypothesis Discrimination - When several hypotheses remain
after testing, hypotheses are ranked according to plausibility.
Fault plausibility is increased by agreement with numeric fault
simulations, by correlation with predetermined fault models, by
agreement with previous anomaly - fault observations, and by
observed frequency of occurrence of the fault. The final result
of diagnosis is a ranked 1list of plausible fault hypotheses
which could not be ruled out. 1In general, no single unique
fault can be determined.

4.2 Architecture

EDIS is built upon a modular blackboard architecture. EDIS
system modules are defined and implemented independently from
each other, lending flexibility to system development,
enhancement, and maintenance. The EDIS system is modularized
according to functional criteria which do not necessarily
reflect physical modularization. Functional modularization
facilitates intelligent scheduling and allows the user to
actively participate in the problem solving process via a
mixed-initiative dialogue. Major functional units include data
retrieval, sensor validation, diagnosis, and user interfacing.
Functional units may be decomposed into smaller tasks. The
diagnostic process, for example, 1is subdivided into anomaly
detection and classification, hypotheses generation, hypotheses
testing, and hypotheses discrimination. All of these modules
operate on the whole SSME model because behavior of SSME
components cannot, in general, be evaluated in isolation.

All EDIS modules share a common explicit structural and
functional model of the SSME. More specialized models, such as
turbo machinery models and combustion process models, for
example, may reside within individual modules. Reasoning based
on these special purpose models is separate from the basic
diagnostic process. A similar separation has been observed to
exist in the current data review process where turbo machinery
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and other specialists are generally only consulted to verify
hypotheses created from analysis of engine performance.

The blackboard serves at the same time as central
inter-module communication medium and as repository for system
state information. The blackboard is the common communication
medium through which all modules exchange information. Modules -
encapsulate reasonably self-contained functions so that the need
for inter-module communication is minimized. Anomalies,
hypotheses, and other important items are stored explicitly on
the blackboard. There they can be read by other modules and the
blackboard serves as a communication medium. At the same time,
however, the information stored on the blackboard represents the
state of the analysis process since findings, hypotheses, and
also tasks (previously executed as well as scheduled ones) can
be found there. Normally, information is never deleted from the

blackboard. Instead, items are marked as obsolete when
necessary. Obsolescence decision time and agent are recorded
with the item. Decisions about data validity are thus made

explicit and reversible.

A complete, explicit account of system state makes in-depth
explanation of system actions and reasoning possible.
Explanations can be prepared according to current system goals
and against the background of previous decisions and events.
Explanation becomes independent from specific reasoning
implementations, such as rules, and even reasoning mechanisms.
Conclusions, decisions, and supporting information can be
examined instead of rules.

Module functions can be classified into control, diagnostic
reasoning, data interface, and user interface functions. A
strategy module controls the scheduling of all other modules.
It is scheduled automatically when the EDIS system is first
initialized. The strategy module creates tasks on the
blackboard which identify the modules (also called knowledge
sources in the context of blackboard management) to be executed.
The strategy module can schedule itself repeatedly to monitor
the progress of data analysis and to possibly reschedule tasks.
User interface tasks present data to users and ask for input.
Both textual and graphical displays are available on the PC
platform. For example, the user completes an input form to
supply test and data file names and the type of comparison data
used for anomaly detection. In later stages of reasoning
anomalies, hypotheses, and inferences can be presented and
verified or rejected by the user. A graphical representation of
SSME structure helps visualize hypothesized causal relations
between symptoms and faults. Specialized interface modules can
be provided to access any of the various data bases which
contain perfromance, configuration, and fault data.
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The blackboard data structures mirror the object-oriented
data structures of the reasoning modules. The blackboard
contains data in the form of classes, class members, attributes,
and attribute values. Classes define structure and attributes of
their members. Attributes have names and values. Values are
stored as character strings in order to be compatible with the
knowledge engineering tool used (KES) . Blackboard data
structures are isomorph to KES class definitions. The
blackboard assumes, however, that data are correctly formatted,
i.e. no syntax checking is performed.

Blackboard data reflect the functional diversity of the
system modules and can be classified into control, model, and
reasoning data and parameter or input values. Control
information constitutes the link between modules (especially the
strategy module) and the system framework. Control information
is interpreted by the scheduler and dispatcher which generate
the actual flow of program execution. Members of the classes
TASK and KNOWLEDGE SOURCE represent control information on the
blackboard. A task is characterized by the attributes name,
priority, and knowledge source. Task priority guides the
scheduling mechanism in selecting the next task to execute. The
specified knowledge source indicates

4.3 Domain Modeling

Following Biswas [10], the structural schematic of the SSME
system is described in terms of primitive components, complex
components, component categories, a set of interconnections, and
fundamental processes. Table 1 contains a 1list of primitive
components for the SSME system and Table 2 the primitive
component categories. All turbopumps are considered to be
complex components consisting of turbine and pump primitive
components. Note that a distinction is made betwen gas-turbine
and hydraulic-turbine turbopumps - different thermodynamic
relations are used to describe the behavior of gases and liquids
in turbine processes.

SSME structure is modeled as a collection of interconnected
instances of components, each characterized by a generic
thermodynamic process, see Section 4.4. SSME behavior is
modeled in terms of deviations of engine parameter values from
normal values. Sets of normal values have been collected at
NASA MSFC for each operating region and are available in a data
base. Deviations of parameter values can be propagated through
the component network using component behavior models.
Component behavior is modeled using constraints at two levels of
specificity. A purely qualitative model 1is valid for any
component of a given type, e.q. pump, pipe, etc. It relates
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TABLE 1. LIST OF PRIMITIVE COMPONENTS

NAME DESCRIPTION

LPFTT - Low Pressure Fuel Turbopump Turbine
LPFPP - Low Pressure Fuel Turbopump Pump
LPOTT - Low Pressure Oxidizer Turbopump Turbine
LPOTP - Low Pressure Oxidizer Turbopump Pump
HPFTT - High Pressure Fuel Turbopump Turbine
HPFTP - High Pressure Fuel Turbopump Pump
HPOTT - High Pressure Oxidizer Turbopump Turbine
HPOTP - High Pressure Oxidizer Turbopump Pump
FPB - Fuel Preburner

OPB - Oxidizer Preburner

MccC - Main Cumbustion Chamber

MFV - Main Fuel Valve

MoV - Main Oxidizer Valve

FPOV - Fuel Preburner Oxidizer Valve

oPOV - Oxidizer Preburner Oxidizer Valve
ccv - Chamber Coolant Valve

MCON - Controller

- NOZ - Nozzle

F101 - Fuel Duct 101

F102 - Fuel Duct 102

F103 - Fuel Duct 103

Fl11 - Fuel Duct 111

0201 - Oxidizer Duct 201

0202 - Oxidizer Duct 202

0208 - Oxidizer Duct 203

HY101 -~ Hydrogen Fluid 101

HYl02 - Hydrogen Fluid 102

HY111 - Hydrogen Fluid 111

0X201 - Oxygen Fluid 201

0X208 - Oxygen Fluid 208

TABLE 2. PRIMITIVE COMPONENT CATEGORIES

a) Gas Turbines f) Valves

b) Hydraulic Turbines g) Preburners

c) Pumps h) Combustion Chambers
d) Ducts i) controllers

e) Fluids j) Nozzles
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qualitative deviations of input parameters to qualitative
deviations of output parameters assuming the component is
functioning correctly. Simplified quantitative models can be
made available for the components of a particular systenm.
Design parameters and empirically determined coefficients have
to be incorporated into the quantitative equations. The
quantitative model can determine and process relative strengths
of influences.

In some cases local propagation results are indeterminate
using either model. 1Indeterminacy is inevitable when parameter
values depend on boundary conditions which can only be derived
from an analysis of the complete system. Thermodynamic systems
rarely exhibit unidirectional causality at the parameter 1level,
i.e. parameter values almost always depend on the behavior of
neighboring components and on boundary conditions. Also,
component behavior is described by at 1least two or more
interacting parameters, e.g. fluid or gas pressure, velocity,
and temperature. When a constraint cannot be verified or used
due to 1lack of data, the assumption is made that no or the
smallest possible deviation from normal behavior has occurred.
Assumptions are recorded and verified or rejected when new data
become available, for example, during analysis of another
component.

Fundamental constraints which describe correct component
behavior are derived from energy conservation laws. When a
constraint does not mention measurable parameters explicitly,
normative constraints are added which hold under the assumption
that the quantities on both sides of the fundamental constraint
are constant. Normative constraints do not determine correct
behavior but relate measurable parameters to fundamental
constraints. They correspond to a more detailed model of the
component in terms of thermodynamic processes. They organize the
prediction/verification process so that behavior constraints can
be verified incrementally and that necessary assumptions become
evident.

Qualitative Behavior Model - Qualitative models consist of
qualitative fundamental constraints, normative constraints, and
auxiliary qualitative relations between quantities in different
constraints. Constraints and relations determine existence and
direction of the deviation in a quantity based on a deviation in
a related quantity. Conceivably, deviations could additionally
be characterized by qualitative statements of relative size but
the current design does not use size. Constraints and relations
are expressed in the same syntax. The general form of a
qualitative statement is "Quantity-1 PRelational-Operator
Quantity-2". The two relational operators are "is proportional
to" (p) and "is inversely proportional to" (ip). A quantity is
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either a state parameter of the fluid or gas, such as pressure,
a derived parameter, such as pressure difference, or an explicit
measure of energy.

The semantics of fundamental and normative constraints and
of auxiliary relations differ. A fundamental constraint
captures an energy balance which must hold when the component is
operating correctly. Faults are assumed to introduce additional
losses, in general. Normative constraints must hold as long as
the quantity they depend on remains constant. Auxiliary
relations describe how a change in the presumably constant
quantity (called a "pseudo-constant") are reflected in the
quantities of the normative constraint. An auxiliary relation
thus couples a normative relation to a fundamental relation via
its pseudo-constant quantity. Normative constraints may be
coupled to a fundamental constraint through a chain of other
normative constraints in order to deal with more complex cases.

For example, the behavior of a pipe is characterized by the
single fundamental constraint CPl: ‘"Pressure-Difference p
Velocity", meaning that the difference in fluid pressure
measured at both ends of the pipe is proportional to the

velocity of the fluid. This constraint was derived from the
fluid energy balance neglecting possible differences in height
and diameter of the pipe ends. The pipe has one normative

constraint CP2: "In-Pressure p Out-Pressure" which holds (at
least) as long as the pseudo-constant "Pressure-Difference"
remains constant. One can observe that the normative constraint
captures a superficial rule-of-thumb analysis of pipe behavior.
Auxiliary relations are applied when the pseudo-constant has (or

is suspected to have) changed and its changes have to be
related to changes in the parameters of the normative
constraint. In the example the auxiliary relations are
"In-Pressure p Pressure-Difference" and "Out-Pressure ip

Pressure-Difference", signifying that the pressure difference
decreases with rising outflow pressure and decreasing inflow
pressure.

The constraints associated with a pump are more complicated
because energy is added to the system. In the case of the SSME
energy is provided to each pump by its associated turbine.
There are two fundamental constraints, one describing the
transfer of mechanical energy from the outside (the pump shaft)
to the fluid and one describing the transformation of fluid
energy into a pressure difference. The fundamental constraints
are CUl: "Mechanical-Power p E-V-Fluid" (E-V-Fluid refers to the
fluid energy-velocity product) and CU2: "Fluid-Energy Pp
Pressure-Difference". Constraint Ccu2 shares normative
constraint and auxiliary equations with constraint CPl1 described
above in the context of the pipe model. Constraint CUl has two
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normative constraints associated with it, CU3: "Fluid-Energy ip
Velocity" related to pseudo-constant "E-V-Fluid" and CU4:
"Torque ip Shaft-Speed" related to pseudo-constant
"Mechanical-Power". Constraints for other components are defined
in a similar manner.

Simplified Quantitative Behavior Model - Simplified -
quantitative models have the same general structure as
qualitative models. Fundamental equations express energy
balances and normative equations define how a quantity (the
associated pseudo-constant) in a fundamental equation can be
determined from component parameters. Normative equations thus
perform the function of both qualitative normative constraints
and qualitative auxiliary relations. Therefore, auxiliary
relations are not needed in the quantitative model. Constraints
are expressed as analytic equations between parameters.

Simplified quantitative equations, i.e. constraints, are
derived from exact thermodynamic equations neglecting as many
terms as possible and performing linearization since the models
describe deviations from the norm only. Equations are
conditioned on a particular target system using application
specific coefficients. Numeric coefficients can be determined
from design specifications and from analysis of previous system
performance. Some coefficients describe invariant properties of
components, such as the friction coefficient of a pipe and
should always remain constant. Other coefficients are variable,
such as the efficiency of a turbopump which may change from one
test to another. Limits on variation are imposed on non-constant
coefficients instead of testing them against a single given
value.

Reasoning With Models - The propagation process through the
SSME model raises different issues as compared to a situation
where few data are known to begin with. Propagation does not
have to proceed across known values. Therefore the component
network disintegrates into small subnets isolated by locations
with known parameter values which can be analyzed individually.
In fact, the decisions not to look beyond known values combined
with not including conflicts based on two propagated values are
equivalent to considering only minimal conflicts in GDE. There
are some cases, however, where this strategy misses the real
cause of the observed symptom, for example, when a component
fails due to a fault at its input but masks the original fault.
Oonly the secondary fault will be detected by constraint based
reasoning. Currently, we are ignoring such induced secondary
faults.

The goal of the reasoning process is to find which
components could be responsible for an anomalous parameter
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value. Following the example of GDE, conflicts are generated
which contain components at least one of which must be faulty.
Fault hypotheses are then created such that all conflicts are
explained. In EDIS conflicts may not accurately reflect the
status of the SSME because of modeling inaccuracies and
indeterminacies. EDIS will rather post too many conflicts than
too few. In GDE components which contribute to a prediction are
collected while the prediction is being generated, i.e. during
value propagation. Components encountered during propagation
are responsible for generating the correct value. EDIS does not
propagate values to predict normal values or to find symptoms.
Instead, components responsible for symptoms are found after the
symptoms, i.e. the anomalous data readings, have been
identified.

The reasoning process uses information stored in component
models to predict parameter deviations and to verify that a
given set of values conforms to the behavior constraints of the
relevant components. Input and output are not distinguished
since constraints are non-directional. Normal behavior is
tacitly assumed. Unknown parameter values or quantities in
constraints are assumed to be nominal but such assumptions are
made explicit. Note that propagation of normal values is
unnecessary in a behavior model describing only deviations.
Propagation would only conclude that inferred parameter values
are also normal, which is assumed anyway. This is a
simplification compared to the generic method using quantitative
constraints as exemplified by GDE, but it is only useful if
normal values for all important parameters are available.

When symptoms are present, EDIS tries to generate all
possible consistent situations which can account for the
symptoms. EDIS generates "scenarios" which indicate measured
and presumed anomalous parameters and those components which are
presumed faulty. Scenarios are derived from constraint models.
Each component which lies in the casual path 1leading from a
correct value to an anomaly is examined. If enough data are
available, all its fundamental constraints can be verified and
the component can be judged good or faulty. In general this is
not possible.

If only one side of a fundamental constraint is known, an
inference can be made about the other quantity. If the first
quantity is normal then the second quantity must also be normal
unless the component is faulty. A conflict will arise if the
second quantity later turns out to be anomalous. This conflict
simply states that the component is faulty since one of its
fundamental constraints is violated. If, however, the first,
i.e. the known, quantity is anomalous then the component is
either faulty or the second quantity is corrupted by another
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component or Dboth. A binary conflict between the component
being faulty and the quantity being corrupted arises.

If none of the quantities in a fundamental constraint are
known, i.e. its normative constraints cannot be evaluated
because of lack of data, propagation from neighboring components
is used to derive possible scenarios. If the neighboring
component has a binary conflict, then both possibilities are
considered and, possibly, new conflicts are created by fusing
local data with propagated data. When propagation 1leads to
inconsistencies the scenario is impossible.

Propagation is also used in the previous case, i.e. when
one side of a fundamental constraint is known, in order to
examine the validity of scenarios. At the end of analysis one,
several, or no scenarios may exist. If none survives our method
has failed. We do not think that this is likely, since no
particular fault behaviors are assumed. Faults only manifest
themselves as violated constraints. If exactly one scenario is
generated, it contains the component or components which are
faulty. If several scenarios survive propagation and testing,
EDIS or the user have to make a choice. At this point specific
fault modes or behaviors may be assumed or simply the number of
faults can be minimized, or fault probabilities of components
can be utilized to discriminate between fault hypotheses.

Currently, the failure propagation mechanism is implemented
using reduced detail, i.e. only anomalies in general are
propagated instead of detailed information about size and
direction of particular parameter deviations. Conflicts are
generated by collecting all components encapsulated between two
or more correct readings which exhibit at least one anomalous
parameter value. Such a method which does not use predictive
models yields too many candidate solutions, but the correct
solution, i.e. the component which 1is responsible for the
anomaly, is guaranteed to be among the candidates. At this time
candidate (or hypothesis) discrimination proceeds under a single
fault assumption. Hypotheses which can explain all anomalies
are located by tracing "backwards" through the component
structure until a root cause is identified. For simplification
the algorithm assumes directional causal relations. Simple
common faults, such as turbine problems, can be found using this
technique.

4.4 Interconnectivity, Functionality, and Processes

Interconnections are determined when the component is
instantiated as part of a specific device or system. Primitive
components are grouped in categories for purposes of
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organization and to get a better understanding of the domain.
The SSME primitive components are grouped in categories in Table
3. The interconnections between the components are illustrated
graphically in Fig.2 . As can be seen the SSME system is
modeled as interconnected complex and primitive components.

Functionality of a primitive component is defined in terms
of one or more fundamental processes - fundamental statements
which describe relations among primitive parameters. Parameteérs
describe the state of an object. For strict qualitative
modeling, parameters take on discrete values such as "high",
"medium", and "low". The current prototype of the EDIS domain
uses analytic equations to describe processes to avoid any
indeterminacy.

As described above, processes are fundamental statements
which describe relations among primitive parameters. The seven
processes currently defined in the prototype EDIS system are:

1) pGas Turbine

2) pHydraulic Turbine
3) pTurbopumps

4) pTransmit

5) pDuct

6) pValve

7) pPreburner

The simulation methodology used to derive both deviant and
normal behavior is described in Section 5.
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TABLE 3. GROUPING OF PRIMITIVE COMPONENTS INTO CATEGORIES

Gas Turbines Hydraulic Turbines DUCTS FLUIDS
LPFTT LPOTT F101 HY101
HPFTT Fl102 HY102
HPOTT Fl103 HY103
F104 HY104
Pumps Valves F105 HY105
Fl106 HY106
LPFTP MFV F107 HY107
LPOTP MOV F108 HY1l08
HPFTP FPOV F109 HY109
HPOTP oPOV F110 HY110
cCcVv Fl1l1 HY111
0201 0X201
Combustion Chambers 0202 0X202
0203 0X203
MCC 0204 0X204
0205 0X205
Controllers Nozzles 0207 0X207
MCON NOZ
Preburners
OPB

FPB
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5. IMPLEMENTATION
5.1 Shell

At the beginning of the project several expert system shell
products were evaluated. Important selection criteria included
power of representation and inference mechanisms, ease of -
creating a custom user interface, portability between various
hardware platforms, and ease of integration with existing and
future software components. Shells which contained support for
the object-oriented paradigm were preferred. The selected shell
also had to run on a personal computer. Our evaluation ranked
NEXPERT-Object first and KES second. However, due to budget
constraints we selected KES. KES provides backward chaining
rules, data driven demons, and class/member (object-oriented)
data representations. In addition we purchased a subroutine
package from Quinn-Curtis (QC) which contains support for
mathematical functions and graphical data presentation. The QC
routines were integrated with KES and provide the user interface
framework. KES itself was embedded into a C main program which
manages the blackboard and dispatches the KES modules.
Embedding KES allows the system designer to develop and test
EDIS modules as stand-alone KES applications first and
subsequently integrate them into EDIS. Modules can also be
written in C, but C modules have to implement blackboard
communication explicitly.

KES 1is currently being updated from version 2.5 to version
3.0. The new version contains an extended window-driven
developers interface and support for relations between data
objects. Version 3.0 is available for the Hewlett-Packard
workstation and is integrated with X Windows. Version 3.0 has
not yet been released for the PC.

A listing of the "C Source Code" is contained in Appendix B
and one for the "KES Code"™ in Appendix C.

5.2 Computer Requirements

We are using KES 3.0 on an HP 9000/319 UNIX workstation and
KES 2.5 on a Hewlett-Packard QS 16/S personal computer based on
the Intel 80386SX microprocessor. The PC uses the DOS 3.3
operating system. KES does not require a 80386-based PC but it
is recommended. A numeric coprocessor is recommended especially
to enhance the speed of drawing graphic images. A hard disk
drive is required and we used at least 640 KBytes of main
memory. The display routines can be adapted to any graphics
interface but EGA or VGA is recommended for better results.
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5.3 File Structure

There are two C header files "comdef.h" and "ssincl.h".
"comdef.h" contains data definitions and function declarations
for blackboard communications. "ssincl.h" has to be included in
every C file to be compiled. It includes all necessary modules.

The file "ssmain.c" contains the main program, while
"bbcomm.c" implements the blackboard communication functions.
"embed.c" contains the callback interface routines for calls
from the embedded KES systemn. Oon the PC "menul.c", "menu2.c",
and "menu3.c" contain user interface routines.

On the PC the system can be compiled with the Microsoft C
compiler using a "Large" memory model and a stack size of 4000.
Linking must include ssmain (which includes header), bbcomm,
embed, the "menu?" user interface files, and the Quinn-Curtis
files segruah (an adapted version of segraph), worlddr, asyncxx,
and hpplot. Care must be taken that the include files for the
Quinn-Curtis files can be found by the linker. You may need to
use the "I" option of the linker. If you have added modules
(knowledge sources) to the system written in C these must also
be included..

KES modules must be parsed with the KES compiler. Compiled
KES modules must reside in the same directory as the executable
“ssmain.exe". The KES module "straty.kb" has to exist; it
represents the strategy module which schedules all tasks. Other
KES modules currently in use are "freadr.kb" which reads
simulated test and comparison data from files, "anomal.kb" which
detects and classifies data anomalies, and "diagn2.kb" which
attempts to find the fault causing the detected anomalies.
Figure 6 illustrates the class hierarchy used to define the
engine model. Figure 7 depicts the reasoning model of the
preliminary qualitative model.

The existence of both KES and C knowledge sources has to be
announced to the systenm. Enter a function call to "initKs" or
"initKSC" in the file "header.c" similar to the ones there. You
will also have to make sure that a task is scheduled which wuses
the new knowledge source. To change task scheduling edit and
re-parse the "straty.kb" KES knowledge base. Make sure that the
task will correctly identify the knowledge source to use as
defined in the "header.c" file. There has to be an "EXIT" task
on the blackboard or the program will never terminate.

Data files contain configuration and test data. The file

"gconf.dat" lists the generic configuration, i.e. components and
interconnections. Data in ‘'"sconf.dat" contains the specific
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configuration, e.g. turbo machinery serial numbers. Data in
"dvarlm.dat" specify how far parameter values may deviate from
the comparison data before they are considered anomalous.
"tdata.dat" and "cdata.dat" contain simulated test and
comparison data in a format directly readable by the KES
"freadr.kb" module. On the PC, the user is prompted for these

last two file names, all other names are hard-coded in module
"freadr.kb".
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6. CASE STUDIES

During the course of this investigation interviews were
conducted with various experts on SSME engine diagnostics.
Several of these interviews are summarized in Appendix C. From
these interviews, several special cases of anomalous engine
performance were determined and the 1logic surrounding the -
diagnosis of these problems investigated. These special cases
were then developed into a form for inclusion in EDIS.

6.1 Turbomachinery Malfunctions

Due to the importance of many turbomachinery components in
the SSME performance, turbomachinery malfunctions are a common
cause for anomalous engine behavior.

High Pressure Fuel Turbopump (HPFTP) Static Seal Leak - In
this case there 1is a leakage of gas past the static seal into
the hot gas manifold. This leakage causes a loss in turbine
power which, in turn, produces the following effects:

* reduction in turbopump shaft speed
* reduction in flow rate exiting turbine
* reduction in turbopump discharge pressure

The decreased flow rate is sensed by the controller which causes
the fuel preburner oxidizer valve to open. This, in turn,
increases the preburner oxidizer flow rate.

Under these conditions, the turbopump must do more work for
the same power output and the tubrine discharge temperature goes
up. If the temperature goes too high, the SSME will shut down.

Obstruction in Inlet Duct to Low Pressure Fuel Turbopump
(LPFT) Turbine - An obstruction in the inlet duct to the LPFT
turbine by some foreign object (fractured seals, fracture of
mozzle vane, glass beads, etc.) causes a 1loss of energy
available to the turbine. This, is turn, results in decreased
turbine power and subsequently a:

* reduction in LPFTP shaft speed
* reduction in pump output flow rate
* reduction in pump discharge pressure

The controller senses the increased HPFTP demand and increases
the fuel preburner oxidizer flow. The HPFTP can possibly
cavitate causing excessive turbine discharge temperatures.

Power Loss in LPFTP Due to Fracture of Stator Vane - As
before, a loss of LPFTP turbine power causes a:
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* reduction in pump shaft speed
* reduction in pump output flow
* reduction in pump discharge pressure

The controller senses the increased HPFTP demand and increases
the fuel preburner oxidizer flow. In the event of cavitation,
turbine discharge temperature increases.

6.2 Fuel and Oxidizer leaks

Another common source of anomalous SSME firing data are
fuel and oxidizer 1leaks 1in ducts, manifolds, and cooling
chambers.

Fuel Leak in the MCC - A drop in the MCC coolant discharge
pressure suggests a possiable anomaly. A check in the coolant
discharge temperature reveals a concurrent drop suggesting a
decreased resistance and increased flow rate through the MCC.
The LPFT speed is lower than normal due to the decreased MCC
discharged pressure. The MCC coolant flow rate reveals an
increased value. These parameters suggest a leak in the MCC
coolant tubes.

These anomalies have been investigated and converted into a
form for inclusion into EDIS. They are only preliminary and
represent the manner in which EDIS will perform diagnoses.
Other anomalies and reasoning will be added to EDIS to make it
more comprehensive.
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7. DISCUSSION

We have developed an architecture and a qualitative
reasoning mechanism for reviewing SSME test data and diagnosing
SSME faults based on data anomalies. The modular architecture
developed for EDIS facilitates modular software development and
coordination of different reasoning paradigms. The fault
diagnosis methodology presented combines high degrees of fault
coverage, domain dgenerality, and domain knowledge. Fault
coverage is achieved through constraint-based behavior models
and avoidance of fault assumptions. Domain generality is
derived from using generic component models and separate
connectivity descriptions. Domain knowledge is represented by
the component models. Additionally, expert experience is stored
in heuristic rules. EDIS incorporates and coordinates reasoning
based on heuristic expert knowledge, gqualitative models, and
quantitative models.

Relation to Other Work - The architecture of EDIS is a
variant of the now widely used "blackboard" architecture which
was made famous by the HEARSAY project [35]). The blackboard
architecture facilitates incremental system development,
controlled module interaction, and explicit storage of data and
inference results. The reasoning architecture used by EDIS
combines qualitative and quantitative reasoning at the
hypotheses level which affords more seamless integration than
was possible before.

Relevant comparable approaches to diagnosing engineering
devices have been introduced and discussed at the beginning of
this report. EDIS uses a constraint-based representation for
device behavior similar to the one proposed by Davis [13] but
adopts a qualitative formulation for the constraints as
introduced by de Kleer [24]). EDIS works with models of correct
behavior only which has been publicized by Davis and de Kleer
(GDE) (20]. We had to adapt the reasoning mechanisms of GDE for
the SSME where component models are too weak to propagate values
unambiguously. Also, EDIS can reason about possible scenarios
based on incomplete information while GDE is silent when no more
data can be acquired. EDIS does not resort to pure trial an
error constraint suspension but uses constraints on parameters
as guidance.

Hudlicka and Lessor [36] have developed a problem-solving
system for simulating and diagnosing aircraft behavior which
also incorporates and integrates qualitative and quantitative
reasoning into a causal model of a complex dynamic system.
Their system requires an explicit causal model which defines
influences of components on forces and of forces on flight
characteristics. The causal model is valid for a specific

43



configuration. EDIS attempts to reason from component models
and interconnectivity information. EDIS can easily be adapted
to changes in configuration. The option of creating an explicit
causal model from the component and constraint-based model to
facilitate diagnosis later may be explored in the future. Their
causal model is directional and contains no feedback or cycles
and does not describe component behavior by itself as compared
to component constraints in EDIS. Their quantitative model,
like EDIS, uses simplified 1linearized equations which are
defined for a number of operating conditions. Diagnosis does not
start at the detailed level of sensor anomalies used in EDIS but
when an alarm at system 1level is received from a separate
diagnostic system. The problem of dealing with multiple faults
is therefore simplified because individual fault notices are
assumed to be received. 1In short, the approach taken by EDIS
appears to model systems at a deeper level.

Sussman and Steele have developed a general framework for
reasoning with non-directional constraints [37]. Their approach
uses "equivalence slices" to represent several different views
of one set of components and avoids solving simultaneous
symbolic equations. Each view contributes different pieces of
the final analysis. A slice can also represent concisely the
behavior of several components and thus support hierarchical
composition. CONSTRAINTS manipulates exact numeric constraints
in contrast to EDIS. CONSTRAINTS is based on EL developed by
Stallman and Sussman ([38]) which introduced the method of
"propagation of constraints" to analyze electrical circuits. EL
dealt with components which display different behaviors in
different states by assuming states and retracting inferences
when an assumed state 1lead to an inconsistency. EL retains
dependency information to identify the inferences to retract.
EDIS must find all possible situations, i.e. all possible
combinations of component states, which are consistent with the
data. EDIS uses dependency information not to retract facts but
to assign blame to faulty components.

De Kleer applied constraint-based reasoning to qualitative
analysis of physical systems, in particular to electric circuits
(39]). In his EQUAL, system component behavior is expressed by
qualitative equations called "confluences". EQUAL, like EDIS,
reasons about incremental changes from steady-state operating
points. The EDIS constraint "A p B" is completely equivalent to
de Kleer’s formulation "dA = dB". Both constraints indicate
that an increase (or decrease) in A will lead to an increase (or
decrease) in B. EDIS 1is limited to first order constraints
while de Kleer’s gqualitative calculus includes higher order
derivatives. EDIS does not mention steady-state constraints
because it assumes equilibrium unless otherwise indicated.
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EDIS captures causality in terms of function instead of
behavior, cmp. EQUAL. Functional causality leads to the
distinction between fundamental and normative constraints. The
primary function of a component gives rise to fundamental
constraints which are only violated in case of a component
fault, i.e. when component function is compromised. Given a
fundamental constraint, the constrained quantities can be
related to measurable quantities using normative constraints and
auxiliary relations. Normative constraints in this sense
"cause" normative constraints. Functional causality is
non-directional within constraints, however. For example, the
primary function of a pump is the conversion of mechanical
energy into fluid energy. A fundamental constraint of the pump
model expresses energy conservation across this conversion.
Mechanical power 1is characterized via torque and radial
velocity; fluid power is characterized by fluid energy (and thus
pressure difference) and fluid velocity. The normative
constraint that torque is inversely proportional to radial
velocity is caused by the fundamental constraint which forces
their product to be constant.

De Kleer also shows how teleological analysis can lead to
an understanding of the function of individual components with
respect to the complete device. EDIS incorporates some causal
information by virtue of the arrangement of constraints and
pseudo-constants and thus falls in between GDE, which ignores
causality, and EQUAL, which explicitly models causality.
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APPENDIX A: SUMMARY of INTERVIEW SESSIONS




REPORT (NAS8-36955, D.O. 58)
December 14, 1989
by
Martin Hofmann
Thomas Cost
UAH

Current Understanding of the Review and Diagnosis Process
This report documents the current status of the EDIS project.
Events:

Mike Whitley and Gary Lyles were unavailable for two weeks in
December but Mike Whitley arranged a meeting with SSME data
review experts for us and has left us some documentation. On
Dec. 8 we were able to meet with Marc Neely and Lewis Maddox to
discuss the basics of the data review process. We were also
introduced to Bruce Boulanger and ??? from Martin Marietta who
support the numeric SSME performance predication and data
reduction models. We will meet with them again to learn more
about the numeric SSME models and how they are used in the data
review and diagnosis task.

Tasks:

We have made progress in all three aspects of the Project
Assessment Task as defined in the Study Orientation Meeting
Document of November 2, 1989. (1) The review of applicable
literature is continuing; a partial bibliography is attached.

(2) SSME propulsion modeling is being addressed in the context of
the Power Balance Model and the Digital Transient Model. (3) The
engine diagnosis task was described to us by Marc Neely and we
have studied documentation provided by Mike and Bruce.

The following is a summary of our current understanding of the
data review and diagnostic processes. We will point out where we
still lack information, and where we see potential for a
successful expert system application. We would appreciate any
corrections or improvements you can suggest for us to
incorporate. In our next session with Marc we will try to
identify those faults and symptoms which we will incorporate into
the prototype system. We will study the knowledge which he
applies specifically in solving the chosen problems and we will
determine the tools and mechanisms our system will have to employ
to mimic his reasoning process.

1. Literature review: a partial bibliography is attached.
2. Propulsion System Modeling:
Documents reviewed:

“"SSME Model Analysis Procedure for Ground Test Data
Review Support".

"procedure for Implementing the Power Balance".

"Engine and Pump Performance Calculations Used in
TIP87BAB" by J. Taylor Hooper.

e"'ﬁll\imﬁ_ -




WSSME PHASE Il Power Balance Average Database', Memo
3912-P/10-89 by B. Boulanger, Jan. 19, 1989.

"RSS-8598-1" describing the Space Shuttle Main Engine
Performance Prediction and Data Reduction Model and its
usage.

"Space Shuttle Main Engine", Part Number RS007001, SSME
Description and Operation, by Rocketdyne, E41000, RSS-
8559-1-1-1, Sept. 1, 1983.

3. Engine Diagnosis

Data review is based on knowledge of engine configuration,
modulation of the control inputs as scheduled for the test,
expected data, and measured actual data. Diagnosis is based on
knowledge of how the engine works (in normal and fault
situations), how the engine is controlled, and what behavior to
expect. Data are analyzed mostly qualitatively and
comparatively. Absolute values are less important except when
absolute limits are exceeded (e.g. as defined in the interface
control document). For example, the DTM returns only relative
data. Fault detection is triggered by unexpected levels
(relative to the expected levels) of parameters and by phenomena
in the data, e.g. steps, spikes, undershoot, overshoot, etc.
Data are inspected first for the whole phase and, if a problem is
suspected, in more detail, i.e. a data segment is enlarged.

Comparison data:

Digital data are analyzed in three segments: startup, main stage,
and shutdown. For each phase comparison data are prepared in
advance. Comparison material is derived from several sources.
Note: even the control of the engine is fairly constant, e.g.
valve openings, etc. However, the test objectives may require
changes. In one example, it appeared as if the expert at first
treated an observed deviation as a possible problem and he
explained it subsequently as being the result of non-standard
control as required by a test objective. Thus, instead of
generating new specific reference curves for this particular
test, a nominal reference was used and expectations for
differences were created mentally. Differences can be predicted
as relative changes, reference curves would have to be absolute
values.

a) 2 sigma limits compiled from all previous tests.
b) Data from (one or two) previous tests with a
similarly configured engine and similar test

objectives.

c) Absolute (static or generic) limits from the
interface control document. ‘

d) Known changes to the engine configuration.

e) Test objectives.



f) PBM predictions (?)

The above mentioned sources define expectations for the actual
data and for normal, possible deviations from the expected data.
when deviations are observed they may be explained as normal
engine variations, effects of wear, effects of replacing
components, effects of other engine changes, effects of changed
engine control, effects of changed instrumentation, or faults.
Faults can be instrumentation faults, data faults, and engine
faults.

Fault verification:

If a fault is suspected three hypotheses are tested in order:
i) incorrect sensor readings
ii) incorrect data processing
iii) engine faults

i) Sensor problems can be identified through inspection of raw
sensor data. Often sensors are redundantly implemented and can
be checked directly against each other. Other times data
validity can be checked through dependent data at related
sensors. Sometimes instrumentation experts can help to identify
or rule out sensor fault modes and fault possibilities, e.g.
some sensors cannot read negative values. (We will need more
detailed information on types, location, and operation of
sensors.) Also, there may be known sensor problems which can
explain differences between data. Sensor problems may exist in
comparison or test data.

ii) For now we assume correct processing.
iii) Diagnosis of the engine is necessary, see below.

Engine diagnosis:

starting from a data anomaly the faulty behavior of the engine is
reconstructed. Then the cause of the faulty behavior has to be
determined. Faulty behavior can be explained from a qualitative
understanding/simulation of the corresponding engine parts.
Causes for faulty behavior are hypothesized by the expert (based
on experience?). Hypotheses are tested with the help of numeric
models. For example, the DTM can verify an incomplete ignition
hypothesis. Note: "incomplete ignition" may be the cause for
some data anomalies but it represents faulty behavior and not a
satisfactory diagnosis. However, it is not directly observable
and "closer" to a physical or functional cause. Numerical models
ONLY simulate behaviors and behavior interaction; an expert has
to postulate the underlying defect(s). Therefore, fault
hypotheses have to be characterized by fault models for the
responsible component. Fault models translate faults into fault
behavior. We are told that sometimes no unambiguous explanation
for a fault behavior can be found.

In some cases analog data will be requested from the analog data
review to gain more information about engine behavior in.a given
interval where a problem is suspected. Analog data can identify




imbalance in rotors and ball wear, for example. Also, some data
are available from test stand instrumentation, e.g. total fuel
and LOX flows.

Engine decomposition into subsystems:

In some situations the behavior of only parts of the engine have
to be considered, for example each turbopump, the fuel and the
LOX systems.

Qualitative model

The expert uses a mental qualitative model of the structure and
function of engine components and controllers to predict
behavior. The expert can derive the effects of deviations of one
parameter on other parameters in qualitative terms. Controllers
will often mask faults by compensating for their effects.
Sometimes resulting transients can be observed in the data, other
times the controllers act too fast. In feedback situations we
can look for separate additional effects of members of the
feedback loop. If qualitative simulation cannot identify the
cause of a problem, it will at least identify all the involved
processes. The expert can then select the most likely ones. Of
course, causal relations could be derived which store the fault
propagation paths generated by the qualitative reasoning process.

Some important aspects of SSME operation:

Preburner operating levels are closed-loop controlled via
oxidizer flow rates through modulation of the preburner oxidizer
valves.

The main oxidizer valve, main fuel valve, and chamber coolant
valve are scheduled as function of the commanded thrust.

The main oxidizer valve and the fuel preburner oxidizer valves
are modulated to maintain engine thrust and mixture ration during
steady state.

Problems:

Diagnosis is performed with the help of several cooperating human
experts, i.e. digital data expert, analog data expert,
instrumentation expert, numeric model expert. We will
concentrate on diagnosis using digital data.

Data show strong random variation and instrument resolution is
limited.

Comparison of test data segments against reference data seems
more important than assumed. It may be necessary to supply
numerical data comparison algorithms (in addition to current
preprocessing). In the short term we will work with
characterizations of the data, e.g. "data show a step at time tv,
" data show 3% undershoot during time interval t1-t2", or data
deviate from reference by 10% in time interval t1-t2". The user
will be prompted to perform manual/visual validation by
inspecting other, related data curves.

Additional information needed:




Documentation on SSME instrumentation.

Wwhen are which numerical models run?

How is the data base of prior failures used?
Examples of in-run versus between-run problems.
Possibly some case records of diagnosed faults.

Possibly training material for novice data review
personnel.

Qualitative reasoning about the behavior of the SSME as
performed by the human expert, e.g. effects of fuel
leaks. More detail than what has been observed is

needed.

A closer look at the diagnosis process, best in the
context of some relevant fault.

Direct access to the case data base and numeric models.
How important”is it to directly access data? Should
the system simply ask the user to do that manually?

Computer networking: can a PC communicate with the IBM
mainframe?

Possible Expert System support:

* Selection of reference material, similar to
intelligent data base management.

* Generation of inputs and parameters for numerical
models.

* Comparison of data: detection of limit violations. In
the first phase of this project it may be too
complicated to detect more subtle phenomena in the
data.

* Qualitative simulation of SSME behavior with user
defined aberrations in the data.

* Fault hypothesis generation from observed faulty
behavior, based on causal, functional, and structural
interdependencies. Assistance in verification,
testing, and discrimination of hypotheses.
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Support of the Data Review Process Provided by Numeric Engine Models
Events:

On January 17, 1990 Tom Cost and Martin Hofmann met with Bruce
Boulanger and Brian Piekarski from Martin Marietta, who maintain
the numeric SSME performance predication and data reduction
models. We learned what types of analysis they perform in
support of the data review process.

Knowledge Gathered:

Martin Marietta: There are two groups from Martin Marietta
involved in the engine tests. One inspects raw measured data,
compares these data with data from the previous test (like Marc
et al.), and archives the data in a data base. An anomalies data
base is kept for raw measured data.

The other group (Bruce & Brian) uses averaged data (from 50
sanples per second to one-second averages) for steady~state data
sections. Transients are ignored. The PBM, too, works with 1-
second average data. l-second average data are kept in a data
base on the IBM. (B&B are supervised by John Butas from NASA.)

NASA itself (Chris Singer?) maintains a data base of test data
from which mean and standard deviation values are derived, i.e.
the "2-sigma" limits. While B&B work on the IBM, the 2-sigma
data are kept on the Perkin-Elmer. The IBM can be accessed via a
modem and KERMIT from a PC.

Use of Models: The engine models (mainly the PBM, also the DTM)
are used for two main purposes. a) Engine performance
evaluation: The group from Martin Marietta provides a second
opinion versus Rocketdyne’s evaluation of engine performance
after each test. b) Support for the data review process as
performed by Marc Neely et al., i.e. on a system level. (It
appears that Marc etc., besides evaluating the digital data, also
coordinate the evaluation of test data by specialists, e.g.
numeric model specialists, turbo machinery experts, sensor
experts, analog data specialists, etc.)

a) Engine performance evaluation: The main goal is to verify
that the engine hardware is performing adequately. The hardware
is either being readied for flight or new designs are tested. The
PBM is run in the "data reduction mode". Results are presented
in comparison with 3 or 4 previous tests. For example, a flow
rate at 104% power at steady-state is plotted versus previous
test results. Some data patterns indicate problems. For
example, a steady decline in flow rate may indicate a leak, or
degraded trust may indicate loss of combustion efficiency,
measurement problems, or may reflect hardware changes.

Engine components are evaluated separately (mostly pumps) via



efficiency factors. Efficiency factors are calculated by varying
component parameters until the model predictions approximate the
measured data. Efficiency factors are used tc characterize
hardware components. Both individual low efficiency as well as
disparate efficiencies of fuel and LOX pumps can lead to engine
problems. Excessively low efficiency will manifest itself in
other measured parameters, e.g. high pump discharge temps, so
that model-based analysis is not always necessary. For
subsequent tests the calculated efficiency factors will be used
to predict overall engine performance. Since pumps are
interchangeable individual performance histories are kept for
themn.

b) Data Review Support: Generally no pretest predictions are made
except for actual flights, but sometimes KF and C2 factors are
estimated based on the last test. KF and C2 calibrate fuel flow
and mixture ratio measurements. The model can be used to test
fault hypotheses for leaks and flow resistances. The model can
simulate leaks and increased flow resistance and its results will
be interpreted as deviations (or "deltas") from the nominal
parameters. The deltas will be indicated in a schematic of the
engine configurations. Also, plots of nominal parameter values
versus anomalous values for various power levels may be produced.

Main Model Parameters:

INPUT:
LOX flow rate N\ from facility meters
fuel flow rate /
calculated thrust
ISP chart (specific impulse: thrust/flow rate)
nominal mixture ratio

OUTPUT:
High pressure (HP) turbine discharge temps (2)
HP turbine pressures (2)
HP pump fuel inlet pressure (1)
LP fuel turbine inlet temp (1)
preburner chamber pressures (2)
HP oxidizer pump suction specific speed (1)

Tasks Performed:

We have completed the project assessment phase and are starting
the project specification phase.

Possible additional benefits from an expert system:

The expert system could exercise the numeric models in support of
Marc Neely et al. in standard situations without intervention by
Martin Marietta personnel. This would permit better integration
and speedier execution of the review process. The expert system

would thus capture expertise necessary to run the numeric engine
models.
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finclude "ssincl.h"

int 1,3,k,1;

int success;

long int v_time = 0;

class_ptr blackboard = NULL;

int bb size = 0;

member ptr first task;

member ptr current_task;

senber ptr temp mem;

attr_ptr temp attr;

attr ptr #app;

KES_command_type command_type:
KES attribute_type temp KES attr;
KES_ atr _seq_type temp_KES_ attr _seq;
KES class_type temp KES class, temp KES class2;
KBs_lelber_type temp KES mem;

KES value type temp KES value;

KES_ class value_type telp KES cv;

int (*fct_ptr) ():

/* virtual time %/
/* define the unique blackboard */
/* number of classes on the blackboard */
/* head ptr for task list #/

main()
{ int wax_prio, num_attrs;
char *t_name, file - name[LINE_LENGTH], temp_str_arr[LINE_LENGTH];
tifdef NSDOS
char temp33[LINE_LENGTH];
fendif
char #KS nawe, *KS_fct, *KS_dir, *C_name, *temp str, *class_name;
char *attr name, tpen _name, *temp str2;
char KS_io_list{LINE_LENGTH], t _string[LINE_LENGTH];
lelber_ptr t_men;
attr val type t_aval;

current_task = NULL;
first task = NULL;

initialize(&blackboard);
fifdef NSDOS

initialize vindows():
fendif

/* basic loop = task dispatcher #/

/% THIS PINDS TASKS ON THE BB! #/

for (i) {
/* £ind task on BB vith highest priority #/
first task = bb_find_mem(blackboard, "TASK"); /* get first task #/
current task = first _task;
max_prio = at01(f1nd attr sval(current_task, "priority"));
current_task = current task->fvd;
vhile (current task != NULL) ¢
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temp attr = find attr(current task->attributes, "priority");
if (max_prio < atoi(temp attr->attr value.sval)) {

first task = current task;

rax_prio = atoi(temp_attr->attr value.sval);

)
current task = current_task->fvd;

/* nov first task holds the task vith highest priority #*/

/% assume there alvas is one: there should alvays be a
task to run the strategist left on the BB, To exit
use an explicit EXIT task! %/

/* Check for EXIT task #/
t_name = find_attr sval(first_task, "task name");
if (strcmp(t_name, "EXIT") == 0) {
clean_up();
ent(o) /nnnunnn PROGRAX EXIT ittttiittitttttitiitun/
s-
/* othervise do task: retrieve KS #/

/% Por KES task: KS load, BB read, KS_execute, BB write, KS_unload */
/% For C program: run program vith paraleter pointer. #/
/% retrieving the KS and task name */
v_timet+;
KS name = find attr sval(first_task, "knovledge source");
KS fct = find_ attr sval(flrst task, "task name");
telp wen := find | men(bb_find_mem(blackboard, "Ks"), KS _name);
if (strcwp(find attr sval(temp mem, "KS kind"), "KES") == 0) {
/* KES knovledge source */
strcpy(file_name, find attr_sval(temp_mem, "exec file name"));
strcat(file name, EXTENS).
$ifdef HP-OX
printf("Executing KES task is using file is.\n", t_name, file name);
fendif
fifdef MSDOS
sprintf(temp33, "Executing KBS task is using file is.\n", t_name, file name);
init_message_vindow();
display as_message(temp33);
fendif
/* KS load */
if (KES_1d kb(file name, 60000L) != KES_success c)/k (1 1= 1)%/
printf("Cannot load KES file %s.\n", file nale).
)
else {
/* BB read #/

/% test puts(“BB read."); */
strepy(KS_io list, find_attr_sval(temp_mem, "IN"));
temp str = KS io_list;
while ((temp_| str = strtok(temp str, " ,")) != NULL) {
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/* now assert all members */
t mem = bb_find mem(blackboard, temp str);
vhile (t _mem != NULL) {
class_name = t_mem->class_name;
/* execute commands like: reassertclass class = class + member #/

temp KES class = KES_g_named class(class name);
KES parse_members(temp KES class, t_mem->member name,
KES false c, &telp KES cv);
KES reassertclass(telp KES class, KES_true_c,
KES null class value c, temp KES cv);
tifdef HP-0X
/* test */ puts(reassertclass_com gen(class_name, t_men->member_name));
fendif
fifdef MSDOS

/% test #/ display_as_lessage(reassertclass_con_qen(class_nale, t_mem->menber_name));

fendif

temp attr = t_mem->attributes;

vhile (temp_ attr != NULL) {
temp KES attr = KES_g_named atr(telp KES class, temp attr->attr name);
temp KBS men = KES g _named_member(temp KES_class, t _mem->member name);
KEs_parse value(temp KES men, temp KES attr, temp attr->attr value.sval,

§temp KES value);

KES reassert(temp KES wem, temp KES attr, temp KES value);

temp_attr = temp_attr->fwd;
)i
t _men = t_mem->fud;
}:
temp str = NULL; /* get ready for next call to strtok #/
)i
/% KS execute etc. */
KS_dir = find_attr_sval(temp_mem, "inference direction");
it (strcmp(KS_ “dir, "forward®) == 0) (
}ifdef HP-UX
/* test */ puts(reassert_glob_com_gen(find attr sval(temp mem,
"function®), "true"));
fendif
$ifdef MSDOS
/% test */ display as_message(reassert_glob_com _gen(find_attr_sval(temp_menm,
"function"), "true"));
fendif
temp KES attr = KES_g_named_atr(KES_global class_c,
find attr_sval(temp_mem,
"function®™));
KES parse_value(KES global member c, temp KES attr, "true",
§temp KES value);
KES_reassert(KES_global member c, temp KES attr, temp KES _value);

}
else {
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fifdef HP-UX
/% test %/ puts{obtain com gen(find_attr_sval(temp mem, "function")))

fendif

{ifdef MSDOS

/% test */ display as_message(obtain_com gen(find attr sval(temp_mes, "function")));

fendif

IH

KES_obtain_atr(KES_global member c,

KES_g_named_atr(KES_global class c,

find attr sval(temp mem, "function")

)i

/% BB write #/

strepy(KS_io_list, find attr _sval(tewp mem, "OUT"));
class name = KS_io_list;

/* for all classes on the OUT list #/

while ((class name = strtok(class_name, " ,")) != NULL) {

/* prepare access to attributes (using level 3) #/
temp KES class = KES_g_named class(class_name);

/* nov step through all class members #/

for (temp KES mem = KES g next_member{temp KES class,

KES_null_member c);
teap KES mem != KES_null member c;
temp KES mem = KES_g_next_member(temp KES class,
temp_KES mem)) {

/* create a nev C member */
t_mem = nev_member();
strcpy(t_mem->member_name,

KES_q_member_name(temp_KES_mem));

t mem->attributes = NULL;
t_msem->n_attr = 0;

strcpy(t_mem->class_nawme,
KES_g_class_name(KES_g_member_class(temp_KES mem)));

/% the specific class (not a superclass) */
temp KES class2 = KES_g_named_class(t_mem->class_name);
temp KES attr seq = KES_g_atrs(temp KES class2);
num_attrs = KES_g_num_atrs(temp KES attr seq);
/% retrieve and add the attributes #/
for (i = 1; i <= num_attrs; +i) {

temp KES attr = KES_g_nth atr(temp KES attr seq, iy:

attr_name = KES_g_atr_name(temp KES_attr);
if (KES_g_atr_status(temp KES_wem,tewp KES attr)
== KES_known_C) {
temp str = KES_d_value(temp_KES mem, temp KES attr);
/* parse the value string! (get only first value!) #/
/¢ throv avay anything after a "<" character: this
should be the certainty factor of the first value */
strcpy(temp str_arr, temp str);
1 = strcspn(temp_str_arr, "<");
temp str_arr(1] = '\0';
vhile ((isalnul(telp_str_arr[strlen(telp_str_arr)-1]) == 0)
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&§& (strlen(temp str arr) > 0)) {
temp str_arr(strlen(temp_str arr) - 1] = "\0'; ¥
shile ((isalnum(temp str arr(0]) == 0)
& (strlen(temp str arr) > 0)) {
strcpy(t_string, temp str_arr+l);
strcpy(temp str_arr,t string);):
temp str = temp_ str _arr;
/* nov add the attribute %/
add_attr(&(t_mem->attributes), attr _name, temp str);
(t_mem->n_attr)++;
}i
}i
/% finally insert on BB #*/
bb_insert(&blackboard, class_name, t mem);
)i
class_name = NULL;
}i
/% XS unload */
KES free kb();
#ifdef MSDOS
ClearWindow();
fendif
}
}

else {
/* C program */ /+ In header.c: define the C function as a KS #/

/* C programs can manipulate the blackboard directly. They
are responsible for keeping it in correct format */

printf("Executing C task is.\n", t_name);

fct ptr = find attr_gptr(temp_mem, "executable function");
success = (*fct ptr)();
IH
/* reset task priority to 0 and set attr "done at” to current "<time>" %/
temp attr = find_attr(first task->attributes, "priority");
strcpy(temp attr->attr value.sval, "0");
if ((temp_attr = find attr(flrst task->attr1butes, "done at")} == NULL) {
add_attr(&(first_ task->attributes), "done at", time gen()):
}
else { /% change time of last execution */
strcpy(temp attr->attr_value.sval, time_gen());

/* initialization: for each knowledge source add a member to
the knovledge source class on the blackboard; then
create a task to run the strategist #/
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void initialize(bbp) bb_ptr bbp; {
char c_tap{NAXNAX];
int success;
/* add knovledge sources to BB: include a file with calls to init KS #/

{include "header.c"

/% create task to run strategist */

temp mem = nev_member();
strcpy(temp_mem->member_name, name gen("task"));
temp mew->n attr = 4;

temp_mem->attributes = NULL;

strcpy(temp mem->class_name, "TASK");

/* create attributes */

/¢ attrs: task name = "find_task", KS = "strategist", time = <now>.
Thus: there must be a knowledge source on the BB vith name
strategist; it must have a function "find_task”; and the
KS must be either an executable C program or a parsed knovledge
base. */

sprintf(c_tmp, "$i", v_time); /# virtual time as char string */

app = &(temp mem->attributes);

add_attr(app, "time", c_tmp);

add_attr(app, "priority", "100");

add_attr(app, "task name", "find task");

add_attr(app, "knovledge source", "strategist");

/* put it on the blackboard */

success = bb_insert(bbp, "TASK", temp_mem);

switch (success) {

case -1: printf("Cannot initialize the blackboard!\n"); exit(-1);
break;

default: printf(™Initialized the blackboard.\n");
break;

)

/% Supply the file names for the confiquration files #/
/+ This could be done in a separate task using user confirmation/changes #/
temp mem = nev_member();

strcpy(tesp_mem->member name, name_gen{"file"));
temp_mem->n_attr = 3;

temp mem->attributes = NULL;
strcpy(temp_mem->class name, "FILE");

/* create attributes #/

app = &(temp_mem->attributes);

add_attr(app, "Name®, "sconf.dat");

add_attr(app, "Type", "specific configuration");
add_attr(app, "Comparison Type", "none");

/% put it on the blackboard */

success = bb_insert(&blackboard, "FILE", temp mem);
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temp_mem = nev_member();

strcpy(temp mem->member name, name_gen("file")):
temp_mem->n_attr = 3;

temp _mem->attributes = NULL;
strcpy(temp_mem->class_name, "PILE");

/% create attributes */

app = &(temp_mem->attributes);

add_attr{app, "Name", "dvarlm.dat");
add_attr(app, "Type", "variation limits");
add_attr(app, "Comparison Type", "none");

/% put it on the blackboard #/

success = bb_insert(&blackboard, "PILE", temp mem);

temp mem = nev_member();
strcpy(tesp_mem->member name, name_gen("file"));
temp_mem->n_attr = 3;

tesp mem->attributes = NULL;
strcpy(temp_mem->class_name, "PILE");

/* create attributes */

app = &(temp_mem->attributes);

add_attr(app, "Name", "gconf.dat");
add_attr(app, "Type", "general configuration”);
add_attr(app, "Comparison Type", "none");

/% put it on the blackboard #/

success = bb_insert(&blackboard, "FILE", temp mem);

}

/% auxiliary functions */
/iii***t*itiitiit**t*tii/

/% name_gen generates a unique name derived from a supplied
string and the virtual time.
*/
char *name_gen(stem)
char *stem; (
static char tup[NAXNAN);
static long int tag;
sprintf(tmp, "tsii", stem, tagtt);
return tap;
yi

/* time _gen generates a string represntation from the global integer time #/
char *time_gen() {

static char tmp{MAXNAN};

sprintf(tap, "$i", v_time);

return tmp;

N
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void init KS(bbp, name, fct, dir, exec, kind, in, out)
bb_ptr bbp; char *name, *fct, xdir, *exec, *kind, *in, *out; {
temp mem = nev_member();
strcpy(temp mem->ember name, name);
temp mem->n_attr = 6;
temp mem->attributes = NULL;
strcpy(temp_mem->class_name, "KS");
app = &(temp mem->attributes);
add_attr(app, "function", fct):
/¢ "function” and "inference direction” specify hov to run
a KES module: if direction=forvard then 'assert function=true';
if direction=backward then 'obtain function’.
xf
/% only one function per KS at this point */
add attr(app, "inference direction", dir);
add attr(app, "exec file name", exec);
add_attr(app, "KS kind", kind);
/+ Nov define vhat data are passed between the BB and the KES module
Specify classes (both BB classes and KES classes!)
Syntactic limitation: use single vord class names. */
add_attr(app, "IN, in);
add _attr(app, "0UT", out);
/* put it on the blackboard */
success = bb_insert(bbp, "KS", temp mem);
if (success == <1} {
printf ("ERROR initializing is\n",tewp mem->member name); exit(-1);
}:
}i

/* clean up is called before program exit. #/
void clean up() {
tifdef MSDOS
CloseSEGraphics():
fendif
puts("All tasks on the agenda have been carried out!");
puts("EXIT");
b

/+ init KS C creates a member of class KS for a C function. It uses
a pointer to the function as an attribute value! #/
void init KS_C(bbp, name, fct_comment, fct_exec, kind, in, out)
/¢ bb ptr bbp; char *name, *fct _comsent; int (#fct_exec)(void *);*/
bb_ptr bbp; char *name, *fct_comment; int (*fct_exec)():
char *kind, *in, *out; {
temp mem = nev_member();
strcpy(temp_mem->member name, name);
temp_mem->n_attr = 5;
tenp_mes->attributes = NULL;
strcpy(temp_wem->class_name, "KS");
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app = &(temp_mem->attributes);

add attr(app, "function", fct_comment);

/* "function” states what the C function does. */

add general attr(app, "executable function", 4, fct exec);

add_attr(app, "KS kind", kind);

/* Nov define what data are passed between the BB and the KES module
Specify classes (both BB classes and KES classes!)
Syntactic limitation: use single word class names. #/

add_attr(app, "IN", in);

add_attr(app, "OUT", out);

/* put it on the blackboard ¢/

success = bb_insert(bbp, "KS", temp_mem);

if (success == -1} {

printf("ERROR initializing $s\n",temp mem->member name); exit(-1);

)i
}i

/* reassertclass_com gen generates a command string to add a member
to a class. #/
char treassertclass_com_gen(class_name, member name)
char *class_name, *member name; (
static char command_string{LINE_LENGTH);
tifdef HP-0X
sprintf(command string, reassertclass_format,
class name, member name);
fendif
tifdef MSDOS
sprintf (command string, reassertclass_format, class name,
class_name, member name);
fendif
return command string;

)i

/* reassert _com_gen generates a command string to change the values of
and attribute. The value has to be passed in as a string. #/
char *reassert_com_gen(class_name, member name, attr name, attr sval)
char class_name, *member name, *attr name, *attr sval; {
static char command string[LINE_LENGTH);
sprintf(command string, reassert format, class_name, member name,
attr_name, attr sval);
return command string;
Y

/* reassert_str_com_gen generates a command string to change the values of
and attribute. The value has to be passed in as a string. The value
string vill be enclosed in quotes to satisfy KES for values of
KES type "str" #/

char #*reassert str_com_gen(class_name, member_name, attr name, attr sval)

char *class_name, *member name, *attr name, #attr sval; (
static char command string[LINE_LENGTH];
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sprintf(command string, reassert str format, class_name, member_name,
attr_name, attr sval);
return command string;
)i

/*reassert_glob com_gen generates a command string to change the values of
a global attribute. */
char *reassert_glob com_gen(attr_name, attr val)
char *attr name, #attr val; {
static char command stnnq[LnlB LENGTH};
sprintf(command string, reassert glob format, attr_name, attr_val);
return command string;
H

/% obtain_com gen generates a command string vhich obtains the value
for a global attribute given by attr name. #/
char *obtain_com gen{attr_name) char tattr name;
static char command string[LINE_LENGTE);
sprintf(command string, obtain_format, attr name);
return command string;
)i

/* display_com gen generates and executes a comsand string which returns the
value of an attribute of a class member. The returned string
has the format "attribute value <certainty>". #/
char *display com_gen(class_name, member name, attr_name)
char *class_name, *member name, tattr_name; {
static char command_string[300);
sprintf (command string, display format, class_name, member name,
attr name);
[k comsand string = KES_command(command string); #/
/% not ready to execute, just display */
puts(command string);
return command string;

H

fifdef NSDOS
/* initialize vindovs sets up the Quinn Curtis graphics windows #/
int initialize  windovs() (
InitSEGraphics(6);
/* any changes to the default windovs go here #/
SetPercentWindov(0.0,0.0,1.0,1.0,2); /* windov 2 is full screen #/
return 0;
i
fendif

fifdef HP-UX

int greet user() {
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puts("Hello!"};
return 0;

)i

int get_file name() {

IH

char *f1 = "tdata.dat";
char *f2 = "cdata.dat";
sember ptr temp mem;

tesp_menm = nev_member();
strcpy(tesp_mem->member_name, name gen("file"));
temp_mem->n_attr = 3;

temp mem->attributes = NULL;

strcpy(temp mem->class_name, "FILE");

/% create attributes */

app = &(temp mem->attributes);

add attr(app, "Name", fl1);

add_attr(app, "Type", "test data");
add_attr(app, "Comparison Type", "none");

/% put it on the blackboard */

success = bb_insert(&blackboard, "FILE", temp mem);

temp_mem = nev_member();

strcpy(temp mem->member name, name_gen("file"));
temp mew>n_attr = 3;

temp mem->attributes = NULL;

strcpy(temp mem->class name, "FILE");

/% create attributes #/

app = &(temp mem->attributes);

add_attr(app, "Name", £2);

add_attr(app, "Type", "comparison data");
add_attr(app, "Comparison Type", "previous test");
/* put it on the blackboard */

success = bb_insert(&blackboard, "FILE", temp mem);

return 0;

fendif
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/* This is the basic blackboard communication module. It contains
functions to assert data into KES modules and to retrieve data
from KES modules into a C program. The data are described by
"HEADERS" which define the sharable data types. Data types must
be KES classes. HEADER information must be provided
for each knowledge base (KES module) in the file "header.c".
Add information for each knovledge source you provide there.
(The HEADER information will be put on the blackboard.)
All data declared OOT
vill be extracted from the KES module and made available on the
blackboard. All data declared IN (instances of classes declared IN)
vill be asserted into a KES module before any inferences take place.
The blackboard is declared in file "comdef.h"; the overall include
structure is defined in "ssincl.h",
(A KES module is a parsed KES knovledge base.)

*/
finclude "ssincl.h®

/* Family of blackboard PIND functions; they all have the
blackboard as their first parameter */

/*bb_find class returns a pointer to the class whose name is given or NULL #/
class_ptr bb find class(bb, class_name) class ptr bb; chart class_name; {
class_ptr running ptr;
running ptr = bb;
while (running ptr != NULL)
if (strcmp(running_ptr->class_name, class name) == 0) {
return running ptr;
}
else {
running ptr = running ptr->fvd;
bi
return NULL;
b

/* bb_find mems looks for the first member of a given class and returns
a pointer to it or NULL #/
seaber_ptr bb find mem(bb, class_name) class ptr bb; chart class name; {
class ptr ¢ ptr;
member ptr » ptr;
if ((c_ptr = bb_find_class(bb, class_name)) != NULL) {
if ((m_ptr = c_ptr->members) != NULL) {
return a ptr;
}
)i
return NULL;
}i

/% find_mem returns a member with given name or NULL #/

B-14
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nember ptr find mem(first wem, member name) member ptr first mes;
char* member name; (
nember ptr m ptr = first mew;
while (m_ptr != NULL) {
if (strcmp(m_ptr->member_name, member name) == 0) {
return w_ptr;
}
else {
1 ptr = m_ptr->fvd;
}
)i
return NULL;
b

/% bb_find val looks for members of a class which have a given value
for a given attribute or NULL*/
/+ FOR NOW: return only the first one found */
/% FOR NOW: assume all values are strings (as returned from KES!) */
nmember ptr bb find_val(bb, class_name, attribute, value)
class ptr bb; char *class_name; char *attribute;
attr val _type value/*; utype value_typet/; {
class ptr ¢ ptr;
member ptr m ptr;
attr ptr a ptr;
/* member ptr result;
member ptr aux _ptr;
int matches; */
if {c_ptr = bb_find class(bb, class_name)) {
for (m_ptr = c_ptr->members; a_ptr != NULL; m_ptr = a_ptr->fwd) {
/% find attribute */
a_ptr = find_attr(m_ptr->attributes, attribute);
if (a_ptr != NULL) {
/* assume string values EER R R RN RN R R R AR AL
if (strcnp(a_ptr->attr_va1ue.sva1,value.sval) == Q) {

return »_ptr;

)
)
}
I
return NULL;

)i

/¢ find attr returns an pointer to an attribute of a pember or NULL */
attr ptr find_attr(running ptr, attribute)
attr ptr running ptr; char* attribute; {
vhile (running ptr != NULL)
if (strcmp(running ptr->attr name, attribute) == 0) {
return running ptr;
)
else {
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running ptr = running ptr->fwd;
b
return NULL;
N

/* £ind_attr sval returns the (string) value of an attribute in an
attribute list or NULL #/
char *find attr_sval(m_ptr, attribute)
nember ptr m_ptr; char #attribute; {
attr_ptr a ptr;
a_ptr = find_attr(m_ptr->attributes, attribute);
if (a_ptr != NULL) return a_ptr->attr value.sval;
else return NULL;
b
int find attr ival(w_ptr, attribute)
member ptr m_ptr; char *attribute; {
attr_ptr a ptr;
a_ptr = find_attr(m ptr->attributes, attribute);
if (a_ptr != NULL) return a_ptr->attr_value.ival;

}i
float find attr fval(m_ptr, attribute)
member ptr m ptr; char *attribute; {
attr_ptr a_ptr;
a_ptr = find_attr(m_ptr->attributes, attribute);
if (a_ptr != NULL) return a_ptr->attr_value.fval;
yi
void *find attr gptr(m_ptr, attribute)
member ptr m_ptr; char *attribute; {
attr ptr a ptr;
a_ptr = find_attr(m | ptr->attributes, attribute);
if (a_ptr != NULL) return a_ptr->attr_value.gptr;
bi

/+ Family of insert/change/delete bb functions */
/% RULE: a member which exists vill be podified but never re-inserted.
specified values will overvrite existing ones, other values remain. */
/& WATCH: since the Blackboard may be modified it is necessary to
pass a pointer to the BB, instead of the BB pointer itself, e.g.
the BB is initially empty and ve need to change the BB pointer itself!
Use type bb ptr! #/

/* memory allocation #/
class_ptr new_class() {
return (class ptr) malloc(sizeof (class_type)):

)i
sember ptr nev_member() {

return (sember ptr) malloc(sizeof (member_type)):
bi
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attr ptr nev _attr() {
return (attr_ptr) malloc(sizeof(attr type));
)i

/* bb_insert adds new information. Returns 0 if new member was
inserted, 1 for update of existing member, -1 othervise t/
int bb_insert(bbp, class name, n_nenber)
bb_ptr bbp; char *class name; member ptr n_member; (
class_ptr c ptr;
Bember ptr m_ptr;
attr ptr a ptr, a2 ptr;
int rval = 0;
if ((c_ptr = bb_find class(#bbp, class name)) == NULL) {
/* nev class */
/ittt*thittt*/
if (bb size < MAXBB) {
c_ptr = nev_class();
/* insert at beginning of bb #/
bb_size += 1;
if (*bbp != NULL) (*bbp)->bwd = c_ptr;
c_ptr->fwd = *bbp;
bbp = ¢ ptr;
c_ptr->n_members = 0;
c_ptr->bwd = NOULL;
strcpy(c_ptr->class_name, class name);
C_ptr->sembers = NULL;
)
else {
printf("ERROR: Already MAXBB ($i) classes on the Blackboard!\n", MAYBB);
return(-1);
) .
37 /* Now ve are sure that the class exists and c_ptr points to it #/
if ((w_ptr = find mem(c_ptr->members, n_member->member name)) == NULL) {
/% new member %/
/t*t*tittt*titt/
if (c_ptr->n_members < MAXMEN) {
/% B ptr = nev_member(); */
B ptr = n_member; /+ use existing member: don’'t create a duplicate */
C_ptr->n_members += 1;
if (c_ptr->members != NULL) c_ptr->members->bud = m_ptr;
/* strcpy(m_ptr->member_name, n_member->member name); */
B_ptr->fwd = c_ptr->members;
C_ptr->members = m_ptr;
»_ptr->bwd = NULL;
/* a_ptr->attributes = NULL;
B_ptr->n_attr = 0; #/
/* the new member retains all its attributes ! #/
}
else {
printf("ERROR: Already MAYMEM (%i) members of class is!\n",
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MAYNEN, c_ptr->class_name);
return -1;
}
}
else { /* member exists #/
rval = 1;
/% Now insert values overvrite existing ones #*/
for (a_ptr = n_member->attributes; a_ptr != NULL; a_ptr = a_ptr->fwd) {
if ((a2_ptr = find _attr(m_ptr->attributes, a_ptr->attr name}) = LL} {
/% nev attribute #/
/Ni*tthth*ﬂtn/
if (m_ptr->n_attr < MAXAIT) {
a2 _ptr = nev_attr();
B_ptr->n attr += 1;
if (m_ptr-attributes != NULL) m_ptr->attributes->bwd = a2 ptr:
strcpy(a2_ptr->attr name, a_ptr->attr_name);
a2_ptr->fwd = m_ptr->attributes;
n_ptr-attributes = a2 ptr;
a2 _ptr->bwd = NULL;
)
else {
printf("ERROR: Already MAYATT (1i) attributes in member 3s of class is!\n",
MAXATT, w_ptr->member name, c_ptr->class_name);
return -1;
}
}i -
/% NOW COPY THE VALUE #/
strcpy(a2 ptr->attr_value.sval, a_ptr->attr value.sval);
)
free(n_member); /* we copied everything */
IH
return rval;

H

/* bb_delete removes a member from the bb. Returns 0 if successful,
1 if member not found, 2 if class not found, -1 othervise */
int bb_delete(bbp, class_name, member name)
bb_ptr bbp; char *class name; char *penber name; {
class ptr c_ptr;
member ptr m ptr;
if {{c_ptr = bb_find class(*bbp, class name)) == NULL) return 2;
if ((m_ptr = find mem(c_ptr->members, member hame)) == NULL) return 1;
if (m_ptr->bwd == NULL) {
c_ptr->members = m_ptr->fwd;
}
else {
a_ptr->bwd->fwd = m_ptr->fud;
)i
if (m_ptr->fwd != NULL) {
n_ptr->fud->bwd = m ptr->bvd;
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)i

free(m ptr);

c_ptr->n_members == 1;
i

/* THERE IS NO WAY TO REMOVE CLASSES (does not seem necessary) */
/* THERE IS NO WAY TO REMOVE ATTRIBUTES (does not seem necessary) */

/ittt*iiiit**i**itittiii***iitittiiittﬁitiiitiitttii*tt*t***t*ttti*/
/* Communication with knowledge sources */

/* add_attr creates a nev attribute and adds it to a list of attributes.
It returns 0 if successful, 1 if attr exists, -1 otherwise. It does
not test for overflow since it has no access to the member object.
It sets the bwd pointer of the new element to NULL. */

int add_attr(a_list, a_name, a_val)

attr_ptr #a_list; char *a_name; chart a val; {
attr ptr n_attr;
if ((find_attr(*a_list, a_name)) != NULL) return 1;
n_attr = nev_attr();
/% insert at start of list %/
n_attr->fwd = *a_list;
if (*a_list != NULL) (*a_list)->bwd = n_attr;
%3 list = n_attr;
n_ attr->bwd = NULL;
strcpy(n attr->attr_name, a_name);
strcpy(n_attr->attr_value.sval, a_val); /* assume string value #/
return 0;

5

/* add_general attr is a generalization of add attr. It allows any type of
attribute value to be inserted. a_type indicates the type. #/
int add general attr(a_list, a_name, a_type, a_val)
attr_ptr *a llst, char *a _name; int a_type; attr_val type a_val; {
attr_ptr n_attr;
if ((find_attr(*a_list, a_name)) != NULL) return 1;
n_attr = nev_attr();
/* insert at start of list %/
n_attr->fud = #a_list;
if (*a_list != NOLL) (*a_list)->bwd = n_attr;
*3_list = n_attr;
n_attr->bwd = NULL;
strcpy(n_attr->attr_name, a_name);
switch (a_type) {
case 1: n_attr->attr value.ival = a_val.ival; break; /* integer #*/
case 2: n attr->attr value.fval = a_ “val.fval; break; /* float */
case 4: n attr->attr “value.gptr = a_ “val.gptr; break; /* pointer #/
default: strcpy(n attr->attr value.sval, a _val.sval); /* assume string value */
break;

}
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return 0;
iH
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/* This file contains the subroutines required by the KES
embedding methodology.
xf

#include "ssincl.h"

ifdef MSDOS
char *position_cursor();
jendif

int load kb(kb name)
char *kb name;
{
/* Load the parsed knovledge base */
if (KES_1d kb(strcat(kb_name,EXTENS), 50000L) != KES_success _C) {
printf("Brror loading knovledge base is.");
return(QUIT);

}
return(0K);
)

/* When a KES function is called and it generates a message
KES_receive mesq() is called to display the message. This function is a
nodified version of the function KES receive mesq() provided in the KES
file psembed.c. It prints all messages received except for those messages
preceding a break in the knowledge base, because breaks are ignored in
this program. #/

void
KES_receive mesg(message_text, message_Class)
KES string_type message_text; /* Actual message */
KES msg_class_type message class;  /* Class of message */
{

if ((strcwp(message_text, "\nType ‘c’ to begin\n") != 0) &
strcup(message_text, "\nType 'n’ for another case or ‘s’ to stop\n") != 0 &&
strncap(message text, "\nWarning", 8) != 0) {

fifdef MSDOS
display as_message(message_text);
fendif
fifdef HP-0X
puts(message_text); /* Print the message */
fendif

}
}

/* KES calls KES give value_str{) vhen it needs to determine the value for an
attribute that either has no knovledge sources (an input attribute), or is
being asked for explicitly. The function belov is a wodified version of a
sample function provided in the KES file psembed.c. It accesses a
simulated data base if the attribute cargo load is being asked for:
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othervise the end user is asked for the value. If the response is a why
- or explain, it executes it as a KES command; othervise it checks if the
response is a valid value for the attribute before returning it. */

. KES string type
KES give value str(attribute desc)
KES atr_type  attribute desc; /* Points to an attribute #/
{
/% Holds end user input. Must be static because it is returned. */
static char response| LINE_LENGTH) ;

#ifdef MSDOS
static char *prompt, str2(LINE LENGTH};
fendif
) KES string_type value; /* Por attribute value #/

/% Output parameter for KES_command() */
KES_command_type command_type;

/% Holds attribute value error message */
KES_string_type error_mesq;

for (3:) { /% Loop until a valid attribute value is
input #/

/* Print attribute question prompt #/
ifdef HP-UX

printf("ts", KES g _askfor_prompt(attribute desc));

- fflush(stdout);

fendif
$ifdef NSDOS .

- prompt = KES q_askfor prompt(attribute desc):
display_as_dialogue(prompt);
strcpy(str2, position_cursor(prompt));
if (str2 == NULL) strcpy(str2, prompt);
strcpy(str2, strcat(str2, " "));
fendif
fqets(response, LINE LENGTH, stdin); /* Get end user response #/

$ifdef MSDOS
strcpy(str2, strcat(str2, response));
display_as_dialogue(str2);

fendif

response[strlen(response) - 1] = '\0'; /* Remove trailing nevline #/

/% Erecute why or explain command if entered. strncwp() is used for
explain since it may be followed by a number. */
- if (strcmp(response, "ahy") == 0 ||
strncmp(response, "explain®, 7) == 0) {
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/% The output parameter command type is ignored here because we
do not need to know what command was issued. */
tifdef HP-UX
puts(KES_command(response, &command type));
fendif
#ifdef MSDOS
display as_message(KES_command(response, &command type)):
fendif
)
/* Check if response is a valid value for the attribute before
returning it */
else |
error_mesq = KBS _is_valid_value(attribute_desc, response);
if (*error mesq == '\0') {
break; /% A valid attribute value was given */
j else {
}ifdef HP-UX
puts(error mesq); /* Print error message */
fendif
#ifdef MSDOS
display as_message(error mesg);
fendif
}
}
}
value = response; /* Assign end user input to attribute value */
return (value); /* Return attribute value */

}

/* KES calls KES_g members() when it needs to determine the members for a
class that either has no knowledge sources, or is being asked for
explicitly. The function belov is a modified version of a sample function
provided in the KES file psembed.c. It accesses a simulated data base if
the members of the class Planes is asked for. If the class being asked
for is one other than Planes or Vehicles, the end user is asked for the
peabers. If the response is an explain, it executes it as a KES command;
othervise it checks if the response is a valid member list for the class
before returning it. #/

KES _string_type
KES_g_members(class_name)
KES string type class name; /# Class name */
{
/% Bolds end user input. Must be static because it is returned. */
static char response[ LINE_LENGTH);
tifdef MSDOS
char tprompt, str2({LINE_LENGTH]:
fendif
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KES string_type member names;/* For member list #/

/* Output parameter for KES command() */
KES_command_type command_type;

/% Holds member list error message */
KES string_type error_mesq;

for (::) { /* Loop until a valid member list is input */

/* Print class question prompt #*/
tifdef EP-0X
printf("$s", KES g prompt_class(class_name));
fflush(stdout);
fendif
tifdef NSDOS
prompt = KES g prompt_class(class_name);
display_as_dialoque(prompt);
strcpy(str2, position_cursor(prompt));
if (str2 == NULL) strcpy(str2, prompt);
strepy(str2, strcat(str2, " ")):
fendif
fqets(response, LINE LENGTH, stdin); /* Get end user response t/
$ifdef NSDOS
strepy(str2, strcat(str2, response)):
display_as_dialoque(str2);
fendif

response[strien(response) = 1] = \0'; /* Remove trailing nevwline #/

/* Execute explain command if entered */
if (strcmp(response, "explain") == 0) {

/* The output parameter command_type is ignored here because ve
do not need to knov what command was issued. */
{ifdef HP-UX
puts(KES_command(response, &comsand type));
fendif
fifdef NSDOS
display as_message(KES_command(response, &command_type));
fendif
)
/* Check if response is a valid member list for the class before
returning it */
else {
error_mesq = KES_is_valid_members(class_name, response,
KES false ¢);
if (*error_amesqg == '\0') {
break; /% A valid member list was input #/
} else {
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fifdef HP-UX
puts(error_mesg);/* Print error message */
fendif
tifdef NSDCS
display_as_message(error_esq);
fendif
)
}
}
member names = response; /* Assign end user response to member names */
return (member names); /% Return member names #/

}

fifdef MSDOS

char *position_cursor(line)
char #*line; {
char *last;
int pos;
last = strrchr(line, ‘\n’);
if (last == NULL) last = line;
pos = strlen(last) + 5;
_settextposition(1l, pos);
return last;

}
fendif
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types:

Size Type: sql

(A Little, Noticeably, A Lot).

Direction Type: sql

(Too High, Too Low, Garbage).

Status Type: sql

{Discovered, Verified, Ignored, Explained).

S Change Type: sql

(User, System).

Inter Type: sql

(yes, no).

Relation Type: sql

(proportional, inverse proportional).
$

attributes:
Progress: truth [default: false].
Find Primary Anomalies: truth [default: false].
Internal Porvard Propagation: truth [default: false].
External Forvard Propagation: truth [default: false].
Enerqy coupling backward propagation: truth [default: false].
diagnose: truth.
Component With Top Anomaly: str.
Parameter With Top Anomaly: str.
$
classes:
COMPONENT: |[default:CODummy |
attributes:
Name: str
[default: ""]
{explain: "The name of the component®)}.
ID: str

{explain: "The identification of the actual component, e.g. serial number"}.

\ If ID = " check the 'Is Part Of' Component!
\ Type: sql
\ (pump, turbine, pipe, valve, burmer, sensor).
State: sql
(Assumed Good, Suspected, Known faulty, Known Good, Exonerated)
[default: Assumed Good].
Is Part Of: str
[default: "none")
{explain: "Name of component this one is a part of"}.
Is Composed Of: str
[default: "")
{explain: "List of components of this component").
Has Anomaly: truth
[default: false].
Has Top Anomaly: truth
[default: truej.
:
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endclass.
ABSTRACT COMPONENT: [inherits: COMPONENT] [default: ACDummy]
\ a component which is not explicitly modeled except through its parts,
\ e.q. a turbopump.
attributes:
Function: str.
{
endclass.
CONTROLLER: [inherits: CONPONENT] [default: CTDummy]
attributes:
Controlled Parameter: str.
Actuated Parameter: str.
Actuation Limit High: real.
Actuation Limit Low: real.
Relation: Relation Type
{explain:
"proportional: if actuation goes up, so does the controlled value").
$
endclass.
THERMO _COMPONENT: [inherits: COMPONENT] [default: TDDummy]
attributes:
Nedium: sql
(10X, Liquid Puel, Partially Burned Fuel, Burned Gas).
Nedium Input: str
{default: "]
{explain: "The name of the component attached to the input"}.
Nedium Output: str
[default: "]
{explain: "The name of the component attached to the output"}.
Medium Input Sensor: str
[default: ")
{explain: "The name of a sensor at the input (or a list of names)").
Nedium Output Sensor: str
(default: ""]
{explain: "The name of a sensor at the output (or a list of names)"}.
Internal Sensor: str
[default: "")
{explain: "The name of an internal sensor").
Has Input Anomaly: truth.
Has Output Anomaly: truth.
H
endclass.
SENSOR: [inherits: COMPONENT] [default: SEDummy]
attributes:
Component Name: str
{explain: "The name of the nearest component”}.
Location: sgl
(Inside, Nedium_ Input, Medium_Output, Energy Input, Energy Output)
(explain: "Location relative to the component"}.
Parameter Type: sql

Cc-3
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(Temperature, Pressure, Plow Rate, Valve Position).
Parameter Name: str
{explain: "The name of the measured parameter").
Current Value: real.
Current Value Is Anomalous: truth
[default: false].
Sensor Type: sql
(Single, Redundant, Average)
{explain: "An 'average’ sensor averages the readings",
"from two or more 'redundant’ sensors").
Average Sensor Name: str
[default: "]
{explain: "The name of the averaging semsor if this is a redundant semsor®).
$
endclass.
TURBO PUMP: |[inherits: ABSTRACT_COMPONENT)
attributes:
Run Time: int
{explain: "Number of seconds it has run"}.
$
endclass.
MANIFOLD: [imberits: THERMO COMPONENT]
attributes:
Number Of Inputs: int.
Number Of Outputs: int.
\ {explain: "The names of the components attached to inputs and ouptuts",
\ "are listed in 'Medium Input’ and ‘Medium Ouput’ in the",
\ "form of a character string separated by spaces.”).
\ There is no vay to attach semsors to a manifold in a sensible mamner.
\ They have to be specified with the connected components.
%
endclass.
ENERGY_CONV_COMP: [inherits: THERNO_COMPONENT] [default: ECDummy]
attributes:
Efficiency: real.
Power Coupled To: str
[default: "]
{explain: "The name of the component which is coupled to this one"}.
Pover Direction: sql
(In, Out)
{explain: "in means energy is transferred to the pedium,”,
"out the other way").
Pover Result: str
{explain: "The quantity vhich is affected by the pover input"}.
\ e.q. for a pump this is the pressure difference!
Coupling Sensor: str
[default: "]
{explain: "A sensor which measures the energy coupling pechaniss"}.
Has Coupling Anomaly: truth.
$

C-4
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endclass.
PUMP: [inherits: ENERGY CONV_COMP]
endclass.
TURBINE: [inherits: ENERGY CONV_CONP] (default: TUDummy]
endclass.
GAS_TURBINE: [inherits: TURBINE]
endclass.
HYDRAULIC TURBINE: [inberits: TURBINE]
endclass.
PIPE: [inherits: THERNO COMPONENT]
attributes:
Normal Pressure Drop: real.
H
endclass.
BURNER: [inherits: THERMO COMPONENT|
endclass.
VALVE: [inherits: ENERGY CONV_COMP)
\ Use SENSOR, TEST DATA, COMPARISON DATA and VARIATION LIMITS to
\ analyze valve performance. 'Pover Coupled To’ is the control input and
\ 'Coupling Semsor’ is the position sensor.
endclass.
TEST_DATA:
attributes:
Parameter: str
{explain: "Name of the parameter").
Value: real -
{explain: "Value of the parameter").
Interesting: sql (yes, no)
[default: no]
(explain: "yes: if the value is useful for diagnosis"}.
3
endclass.
COMPARISON_DATA:
attributes:
Parameter: str
{explain: "Name of the parameter").
Value: real
{explain: "Value of the parameter").
H
endclass.
ANOMALIES:
attributes:
Parameter: str.
Size: Size Type.
Direction: Direction Type.
Status: Status Type.
Status Change Time: int.
Status Change Initiator: S Change Type
{default: System].
Explained By: str
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rexplain: "The hypotheses which explain this anomaly"}.
4
endclass.
HYPOTHESES:
attributes:
Explains Anomaly Of Parameter: str.
Fault: sql
(Unknown, Fluid Leak, Obstruction, Seal Leakage, Rotor Problem,
Efficiency Problem).
Faulty Component: str.
Violated Behavior: str.
t
endclass.
$
rules:

RBl:
o:ENERGY_CONV_COMP
if inclass(e, PUNP)
then e>Power Direction = In.
endif.

RB2:
e:ENERGY_CONV_COMP
if inclass(e, GAS TURBINE) or

inclass(e, HYDRAULIC_TURBINE)

then e>Power Direction = Out.
endif.

R1:
¢ : CONPONENT
if c>Has Top Anomaly = true
then Component With Top Anomaly = c>Name.
message combine ("The root anomaly appears to be at the ",
cooName).
endif.

\ If there is no anomaly directly associated with the component,
\ we cannot determine the parameter that is the root anomaly.
R2:
¢:COMPONENT, s:SENSOR, a:ANOMALIES
if Component With Top Anomaly = c>Name and
s>Component Name = c>Name and
a>Parameter = s>Parameter Name
then Parameter With Top Anomaly = a>Parameter.
message combine ("The parameter with the root anomaly is ™",
a>Parameter).
endif.
R2a:
¢:CONTROLLER
if Component With Top Anomaly = c>Name and

ORIGINAL ragy 5
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inclass(c, CONTROLLER) = true
then Parameter With Top Anomaly = c>Actuated Parameter.
message combine ("The parameter with the root anomaly is ",
Co>Actuated Parameter).
endif.

\iti*t*

R2b:
¢:THERNO COMPONENT
if c>Bas Input Anomaly = true or

c>Has Output Anomaly = true

then c>Has Anomaly = true.
endif.

R2c:
o: ENERGY_CONV_COMP
if e>Has Coupling Anomaly
then e>Has Anomaly = true.
endif.

\i*t*i*tit*i*t*tii*ititt*tittt*titttii*i***it**itt*iiitt*tiii**titi*ii*t

\ Identify anomalous sensor readings
RS1:
s:SENSOR, a:ANOMALIES
if s>Parameter Name = a>Parameter
then s>Current Value Is Anomalous = true.
endif.

\i**i**iittt*iit*t*tiii*ttiit***it**tti***i*i**i*itit*tittﬁiiti*ti**ttit

\ Primary anomalies:
\ Note the s>Current Value is Anomalous works but produces multiple
\ identical conclusions

R3al:
c:THERMO_COMPONENT, s:SENSOR, 2:ANOMALIES
if Pind Primary Anomalies = true and
s>Component Name = c>Name and
\ s>Current Value Is Anomalous = true and
s>Parameter Name = a>Parameter and
s>Location = Medium_ Input
then c>Has Input Anomaly = true.
message combine (c>Name, ™ has input anomaly").
endif.
R3a2:
C:THERMO_COMPONENT, s:SENSOR, a:ANOMALIES
if Pind Primary Anomalies = true and
s>Component Name = c>Name and
\ s>Current Value Is Anomalous = true and
s>Parameter Name = a>Parameter and
s>Location = Medium_ Output
then c>Has Output Anomaly = true.

c-7
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pessage combine (c>Name, " has output anomaly").
endif.
R3a3:

e:ENERGY_CONV_COMP, s:SENSOR, a:ANOMALIES

if Find Primary Anomalies = true and
s>Component Name = e>Name and

\ s>Current Value Is Anomalous = true and

s>Parameter Name = a>Parameter and
s>Location = Energy Input or
s>Location = Enerqy Output

then e>Bas Coupling Anomaly = true.

pessage combine (e>Name, " has coupling anomaly").

endif.

R3a4:
C:CONTROLLER, a:ANOMALIES
if Pind Primary Anomalies = true and
c>Actuated Parameter = a>Parameter or
c>Controlled Parameter = a>Parameter
then c>Has Anomaly = true.
message combine ("Controller ", c>Name,

" js involved with anomalous values").

endif.
\iitttitttt

\ Identify correct parameters: sensors do not imply an anomaly

R3a5:
c:THERMO_COMPONENT, s:SENSOR, a:ANOMALIES
if Find Primary Anomalies = true and
s>Component Name = c>Name and
s>Current Value Is Anomalous = false and
\ s>Parameter Name = a>Parameter and
s>Location = Nedium_ Input
then c>Bas Input Anomaly = false.
\ message combine (c>Name, " input ok").
endif.
R3aé:
C:THERMO COMPONENT, s:SENSOR, a:ANOMALIES
if Find Primary Anomalies = true and
s>Component Name = c>Hame and
s>Current Value Is Anomalous = false and
\ s>Parameter Name = a>Parameter and
s>Location = Nedium_ Output
then c>Bas Output Anomaly = false.
\ message combine (c>Name, " output ok").
endif.
R3a7:
e:ENERGY CONV COMP, s:SENSOR, a:ANOMALIES
if Find Primary Anomalies = true and
s>Component Name = e>Name and

c-8
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s>Current Value Is Anomalous = false and
\ s>Parameter Name = a>Parameter and
s>Location = Energy Input or
s>Location = Energy Output
then e>Has Coupling Anomaly = false.
\ message combine (e>Name, " coupling ok").
endif.

\ﬁtttt**itt*

\ Internal forvard propagation: assume if in is anomalous, out is too
\ unless othervise known. This will include too many components,

\ but that is no problem.

R3b1:
t:THERNO_OONPONENT
if Internal Forward Propagation = true and
t>Has Input Anomaly = true
then reassert t>Has Output Anomaly = true <0.9.
pessage combine (t>Name, " has output anomaly").
endif.
R3b2:
e:ENERGY_CONV_CONP
if Internal Porvard Propagation = true and
e>Has Coupling Anomaly = true
then reassert e>Has Output Anomaly = true <0.9.
message combine (e>Name, " has output anomaly").
endif.
RIb3:
¢:ENERGY_CONV_CONP
if Internal Forvard Propagation = true and
e>Has Input Anomaly = true and
e>Pover Direction = Out
then reassert e>Has Coupling Anomaly = true <0.9>.

message combine (e>Name, " has coupling anomaly®).

endif.

\*tttt*tiiti
\External forward propagation

Ricl:
t:THERMO_COMPONENT, t2:THERMO_COMPONENT
if External Porvard Propaqatlon = true and
t>Nedium Input = t2>Name and
t2>Has Output Anomaly = true
then t>Has Input Anomaly = true <0.9>.
message combine (t>Name, " has input anomaly").
endif.
Ric2:
e:ENERGY_CONV_COMP, e2:ENERGY CONV_COMP

c-9
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if External Forward Propagation = true and
e>Pover Direction = In and
e>Power Coupled To = e2>Name and
e2>Has Coupling Anomaly = true
then e>Has Coupling Anomaly = true <0.9>.
sessage combine (e>Name, " has coupling anomaly").
endif.

\tit*ititi
\ Energy coupling backward propagation

Ridl:
e:ENERGY_CONV_COMP, e2:ENERGY_CONV_COMP
if Enerqy coupling backward propagatlon = true and
e>Pover Direction = Out and
e>Power Coupled To = e>Name and
e2>Has Coupling Anomaly = true
then e>Has Coupling Anomaly = true <0.9>.
pessage combine (e>Name, " has coupling anomaly").
endif.

\iit*tti*iititittit*tiiittttiitiiiiittiititiitiiitt*ttt*it*ttiitiiittt
\ Pind top anomalies (most upstream fault manifestations)

R4:
¢ : COMPONENT
if c>Has Anomaly = false
then c>Bas Top Anomaly = false.
endif.

BS:

t:THERMO COMPONENT, C:COMPONENT
if t>Has Anomaly = true and

t>Medium Input # ™ and

t>Nedium Input = c>Name and

c>Has Anomaly = true
then t>Has Top Anomaly = false.

message combine ("Anomalies of ", t>Name,
" may be caused by ", c>Name).

endif.

R6:
e:ENERGY OONV_COMP, C:CONPONENT
if e>Has Anomaly = true and
e>Power Direction = In and
e>Pover Coupled To = c>Name and
c>Has Anomaly = true
then e>Has Top Anomaly = false.

c-10
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message combine ("Anomalies of ", e>Name,
" may be caused by ", c>Name).
endif.

R7a:
C:CONTROLLER, a:ANOMALIES
if ¢>Bas Anomaly = true and
c>Controlled Parameter = a>Parameter
then c>Has Top Anomaly = false.
nessage combine ("Anomalies of ", c>Name,

" way be caused by ", c>Controlled Parameter).

endif.
\ If the controller adjusts the controlled parameter to the correct
\ value, it is not considered a root anomaly although it is the most
\ upstream component in the physical chain.
R7b:
C:CONTROLLER, s:SENSOR
if c>Has Anomaly = true and
s>Parameter Name = c>Controlled Parameter and
s>Current Value Is Anomalous = false
then c>Bas Top Anomaly = false.
message combine ("Anomalies of ", c>Name,

" may be caused by ", c>Controlled Parameter).

endif.

\ R8: not necessary if only valves are controlled: see VALVE
\  C:CONTROLLER, c1:COMPONENT, s:SENSOR

\  if cl>Has Anomaly = true and

\ s>Component Name = cl>Name and

\ s>Parameter Name = c>Actuated Parameter and

\ c>Actuated Parameter = a>Parameter

\  then cl>Bas Top Anomaly = false.

%
demons:

act demon:
vhen
diagnose = true
then
message
combine ("Beginning Diagmosis").
\unfortunately: we have to take care of the dummy members
COMPONENT : CODusmy>Has Anomaly = false.
ABSTRACT CONPONENT:ACDummy>Has Anomaly = false.

\ OONTROLLER: CTDummy>Has Anomaly = false.
THEERNO_CONPONENT: TDDummy>Has Anomaly = false.
\ SENSOR:SEDummy>Bas Anomaly = false.

ENERGY CONV_COMP:ECDummy>Has Anomaly = false.

c-11
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TURBINE: TUDummy>Has Anomaly = false.

\ pessage "ktiiiitt Classifying Sensor Readings #rakiasah,

forall s:SENSOR do
obtain s>Current Value Is Anomalous.
endforall.
\ break.
pessage "tattidis  Finding primary anomalies #ktstaxa,
Find Primary Anomalies = true.
forall c:THERMO_CONPONENT do
obtain c>Bas Input Anomaly.
obtain c>Has Output Anomaly.
endforall.
forall c:ENERGY_CONV_CONP do
obtain c>Has Coupling Anomaly.
endforall.
forall c:COMPONENT do
obtain c>Has Anomaly.
endforall.
reassert Pind Primary Anomalies = false.
Progress = true.
vhile Progress = true do
reassert Progress = false.

message "#*a#tiix  Internal forward propagation kastan,

reassert Internal Porward Propagation = true.
forall c:THERMO COMPONENT do
if status(c>Has Output Anomaly) = unknown then
erase c>Has Anomaly.
erase c>Has Output Anomaly.
\ obtain c>Has Output Anomaly.
obtain c>Bas Anomaly.
if status(c>Has Output Anomaly) = known then
reassert Progress = true.
endif.
endif.
endforall.
forall c:ENERGY_CONV_COMP do
if status(c>Has Coupling Anomaly) = unknown then
erase c>Has Anomaly.
erase c>Has Coupling Anomaly.
\ obtain c>Has Coupling Anomaly.
obtain c>Has Anomaly.
if status(c>Has Coupling Anomaly) = known then
reassert Progress = true.
endif.
endif.
endforall.
reassert Internal Porvard Propagation = false.

message "s#xssaxt  External forvard propagation kdakiksn,

reassert External Porward Propagation = true.
forall c:THERMO_COMPONENT do

c-12
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if status(c>Bas Input Anomaly) = unknown then
erase c>Has Anomaly.
erase c>Has Input Anomaly.
\ obtain c>Has Input Anomaly.
obtain c>Has Anomaly.
if status(c>Has Input Anomaly) = known then
reassert Progress = true.
endif.
endif.
endforall.
forall c:ENERGY_CONV_CONP do
if status(c>Bas Coupling Anomaly) = unknown and
c>Power Direction = In then
erase c>Has Anomaly.
erase c>Has Coupling Anomaly.
\ obtain c>Has Coupling Anomaly.
obtain c>Has Anomaly.
if status(c>Has Coupling Anomaly) = known then
reassert Progress = true.
endif.
endif.
endforall.
endvhile.
reassert External Forward Propagation = false.
message "ixkrxaxt Energy coupling backvard propagation fasrsixt,
reassert Energy coupling backward propagation = true.
forall e:ENERGY_CONV_COMP do
if status(e>Has Coupling Anomaly) = unknown and
e>Pover Direction = Out then
erase e>Has Anomaly.
erase e>Has Coupling Anomaly.
obtain e>Has Anomaly.
endif.
endforall.
reassert Enerqy coupling backward propagation = false.

message "The following components show or are expected to show".
message "anomalous values:".
obtain Parameter With Top Anomaly.

if status(Component With Top Anomaly) = unknown then
ve were unsuccessful!
forall c:CONTROLLER do
if c>Has Anomaly = true then
message combine ("The anomaly is situated between ",
coActuated Parameter, " and ",
c>Controlled Parameter).
reassert Parameter With Top Anomaly = c>Actuated Parameter.
endif.
endforall.
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endif.
endwhen.

%
actions:
message "These actions will not be used".

assertclass PUNP = LPFP, HPFP, LPOP, HPOP.
PUMP:LPFP>Name = "LPFP".

POMP:LPFP>Is Part Of = "LPFTP".
PUNP:LPFP>Medium = Liquid Fuel.
PUNP:LPFP>Nedium Input = "".
POMP:LPFP>Nedium Output = "F101".

PUNP:LPFP>Nedium Input Sensor = "LPFP_FUEL IN PR_S LPFP_FUEL_IN_TENP S".

PUNP:LPFP>Nedium Output Sensor = "".
PUMP:LPFP>Internal Sensor = "".
PUNP: LPFP>Efficiency = 1.0.
PUNP:LPFP>Power Coupled To = "LPFT".
PUNP:LPFP>Pover Direction = In.
PUMP:LPFP>Coupling Semsor = "S2".

PUNP:HPFP>Name = "HPFP".
PUMP:HPFP>Hedium = Liquid Fuel.
PUMP:HPFP>Nedium Input = "F101".
PUNP:HPFP>Hedium Output = "F102".
PUNP:EPFP>Nedium Input Semsor = "".
\ "RPFP_IN PRESS_S HPFP_IN_TENP S HPFP_FUEL_FLOW_S".
PUNP:HPFP>Nedium Output Semsor = "HPFP_DISCE PR S
PUMP:HPFP>Internal Semsor = "".
PUNP:HPFP>Efficiency = 1.0.

PUNP: EPFP>Power Coupled To = "HPFI".
PUNP:HPFP>Power Direction = In.
PUNP:HPFP>Coupling Sensor = "HPFT_SHAFT SPEED S".

PUMP:LPOP>Name = "LPOP".

PUMP: LPOP>Medium = LOX.
PUNP:LPOP>Medium Input = ™.

PUNP: LPOP>Medium Output = "0301".
PUMP: LPOP>Pover Coupled To = "LPOT".
PUNP:LPOP>Pover Direction = In.

PUMP:HPOP>Name = "LPOP".
PUNP:HPOP>Medium = LOX.

assertclass HYDRAULIC TURBINE = LPFT, LPOT.
BYDRAULIC TURBINE:LPFT>Name = "LPFI".

HYDRAULIC TURBINE:LPFT>Pover Coupled To = "LPPP".
HYDRAULIC TURBINE:LPFT>Coupling Semsor = ™.
HYDRAULIC TURBINE:LPPT>Nedium = Liquid Fuel.

FP DISCH_TENP S".
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B{DRAULIC_TURBINE:LPOT>Name = "LPOT".

HYDRAULIC_TURBINE:LPOT>Power Coupled To = "LPOP".

BYDRAULIC_TURBINE:LPOT>Coupling Sensor = "".
HYDRAULIC_TURBINE:LPOT)HediuI = L0X.

assertclass GAS TURBINE = HPFT, HPOT.

GAS_TURBINE:EPFT>Name = "HEPPI".

GAS_TURBINE:HPFT>Nedium Input = "FPB".
GAS_TURBINE:HPFT>Power Direction = Out.
GAS_TURBINE:HPFT>Pover Coupled To = "HPFP".

GAS_TURBINE:EPOT>Name = "EPOT".

assertclass TURBO PUNP = LPFTP, HPFTP, LPOTP, HPOTP.

TURBO PUMP:LPFTP>Name = "LPFTP".

TURBO_PUNP:LPFTP>Is Composed Of = "LPFP LPFI".

TURBO_PUMP:HPFTP>Name = "HPFTP".

TURBO_PUNP:HPFTP>Is Composed Of = "HPFP HPFT".

TURBO PUMP:LPOTP>Name = "LPOTP".

TURBO_PUNP:LPOTP>Is Composed Of = "LPOP LPOT".

TURBO_PUMP:HPOTP>Name = "HPOTP".

TURBO_PUNP:HPOTP>Is Composed Of = "HPOP HPOT".

TURBO_PUMP:LPFTP>ID = "2411R1".
TURBO_PUNP:HPFTP>ID = "4306".
TURBO_PUMP:LPOTP>ID = "2311".

TURBO_PUNP:EPOTP>ID = "0710".
assertclass VALVE = OPOV, FPOV.
VALVE:OPOV>Name = "OPOV®.
VALVE:FPOV>Name = "FPOV",
VALVE:FPOV>Power Direction = In.

VALVE:FPOV>Power Coupled To = "EC1".

VALVE:FPOV>Nedium Output = "FPB".

assertclass NANIFOLD = MANL.
MANIPOLD:NAN1>Name = "NAN1".

assertclass PIPE = F101, 0101.
PIPE:F101>Name = "F101".
PIPE:F101>Hedium Input = "LPFP".
PIPE:F101>Nedium Output = "HPFP".
PIPE:0101>Name = "0101".

assertclass BURNER = FPB, OFB.

Cc-15
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BOURNER: FPB>Name = "FPB".
BURNER:FPB>Medium Input = "FPOV".

BURNER: PPB>Medium = Partially Burned Fuel.
BURNER: FPB>Medium Output = "HPFT".

BURNER:OPB>Name = "OPB".

assertclass SENSOR = S1, S2, S3, S4, S5, S6.
SENSOR:S1>Name = "Si".

SENSOR:S1>Component Name = "LPFP".
SENSOR:S1>Parameter Name = "LPFP_FUEL DISCH PR".
SENSOR:S1>Location = Medium_ Output.
SENSOR:S2>Name = "S2",

SENSOR:S2>Component Name = "LPFP".
SENSOR:S2>Parameter Name = "LPFP_SHAFT SPEED".
SENSOR:S2>Location = Energy Input.
SENSOR:S3>Name = "S3".

SENSOR:S3>Component Name = "FPOV".
SENSOR:S3>Parameter Name = "FPOV_POSITION™.
SENSOR:S3>Location = Energy Inmput.
SENSOR:S4>Name = "S4".

SENSOR:S4>Component Name = "HPFI".
SENSOR:S4>Parameter Name = "HPFT DISCH_TENP".
SENSOR:S4>Location = Nedium_ Output.
SENSOR:S5>Name = "S5".

SENSOR:S5>Component Name = "HPFP".
SENSOR:S5>Parameter Name = "HPFP_DISCH_PR".
SENSOR:S5>Location = Nedium_ Output.
SENSOR:S6>Name = "S6".

SENSOR: S6>Component Name = "HPFP".
SENSOR:S6>Parameter Name = "HPFP_IN _PR".
SENSOR:S6>Location = Medium_ Input.

assertclass CONTROLLER = ECl.

CONTROLLER:EC1>Name = "ECI".
CONTROLLER:EC1>Controlled Parameter = "HPFP_DISCH_PR".
CONTROLLER: EC1>Actuated Parameter = "FPOV_POSITION".

assertclass ANOMALIES = al, a2, a3, a4, a5.
ANOMALIES:al>Parameter = "LPFP_FUEL DISCH PR".
ANOMALIES:a2>Parameter = "HPFT DISCH_TEMP".
ANOMALIES:a3>Parameter = "FPOV_POSITION".
ANOMALIES:a4>Parameter = "LPFP_SHAFT SPEED".
ANOMALIES:a5>Parameter = "HPFP_IN_PR".
diagnose = true.

t
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types:

Size Type: sql
(A Little, Noticeably, A Lot).

Direction Type: sql
(Too High, Too Low, Garbage).

Status Type: sql

(Discovered, Verified, Ignored, Explained).

S Change Type: sql
(User, System).

Inter Type: sql
(yes, no).
2ttributes:
find anomalies: truth.
Finished: truth.
T Size: Size Type.
T Direction: Direction Type.
T Status: Status Type.
T Value: real.
C Value: real.
V Normal Variation: real.
V Small Anomaly: real.
V Medium Anomaly: real.
T Interesting: Inter Type.

Difference: real
[default: (T Value - C Value)].

Counter: int.

3
classes:

TEST DATA:
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attributes:

Parameter: str
{explain: "Name of the parameter").

Value: real
{explain: "Value of the parameter").

Interesting: Inter Type
(default: no]
{explain: "yes: if the value is useful for diagnosis"}.
$
endclass.

COMPARISON DATA:
attributes:

Parameter: str
{explain: "Name of the parameter"”).

Value: real
{explain: "Value of the parameter").
endclass.

VARIATION LINITS:
attributes:

Parameter: str.

Sensor: str
{explain: "The sensor vhich weasures the parameter").

Normal Variation: real
(explain: "Absolute value variation which is still considered normal®}.

Small Anomaly: real
{explain: "Limit for a deviation considered small”}.

Medium Anomaly: real
{explain: "A larger deviation will be considered large"}.
t

endclass.

ANOMALIES:
attributes:
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Parameter: str.

\ [default: "].
Size: Size Type.

Direction: Direction Type.
Status: Status Type.
Status Change Time: int.

Status Change Initiator: S Change Type
[default: System].

Explained By: str
jexplain: "The hypotheses which explain this anomaly").
i

endclass.
$
rules:

Size Rulel:

if
V Normal Variation 1t abs(Difference) and
V Small Anomaly ge abs(Difference)

then
T Size = A Little.
message "Size = A Little".

endif.

Size Rule2:
if
V Small Anomaly 1t abs(Difference) and
V Nedium Anomaly ge abs(Difference)
then
T Size = Noticeably.
message "Size = Noticeably".
endif.

Size Rule3:
if
V Medium Anomaly 1t abs(Difference)
then
T Size = A Lot.
sessage "Size = A Lot".
endif.

Direction Rule High:
if
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Difference gt (0) and
T Size = A Little or
T Size = Noticeably or
T Size = A Lot
then
message "Dir = Too High".
T Direction = Too High.
endif.

Direction Rule Low:
if
Difference it (0) and
T Size = A Little or
T Size = Noticeably or
T Size = A Lot
then
message "Dir = Too Low".
T Direction = Too Low.
endif.

Interesting Data Rule:
if
T Direction = Too High or
T Direction = Too Low
then
T Interesting = yes.
endif.
t
demons:

Doit:
vhen
find anomalies = true
then
Counter = 0.
forall t:TEST_DATA do
forall c:COMPARISON DATA do
if t>Parameter = c>Parameter then
forall v:VARIATION_LINMITS do
if t>Parameter = v>Parameter then
T Value = t>Value.
C Value = ¢>Value.
V Normal Variation = v>Normal Variation.
V Small Anomaly = v>Small Anomaly.
V Nedium Anomaly = v>NMedium Anomaly.
if T Interesting = yes then
reassert Counter = (Counter + 1).
addmember ANOMALIES, combine("anomaly”, Counter).
reassert Finished = false.
forall a:AMOMALIES do
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if determined{a>Parameter) = false and
Pinished = false

then
message combine ("Storing in ", a).
a>Parameter = t>Parameter.
a>Size = T Size.
a>Direction = T Direction.
a>Status = Discovered.
a>Status Change Initiator = System.
reassert Finished = true.

endif.

endforall.
endif.

erase T Value, C Value, V Medium Anomaly, T Interesting, T Size.
erase T Direction, V Normal Variation, V Small Anomaly, Difference.

endif.
endforall.
endif.
endforall. i
endforall.
endwhen.
¢
actions:

message "These actions will not be used”.

read "dvarlm.dat",
VARIATION LINITS, VARIATION LIMITS (Parameter, Sensor,
Normal Variation, Small Anomaly, Medium Anomaly).
\ message combine ("VLimit: LPFP_FUEL IN PR n var: ",
\ VARIATION LINITS:LPFP_FUEL IN PR>Normal Variation).
message
combine ("Reading test data file: tdata.dat").
\ the data files may later be replaced by rav data files and read
\ by a C function!
read "tdata.dat",
TEST DATA, TEST DATA (Parameter, Value).
\ message combine ("Data: Value: ", TEST DATA:LPFP_FUEL_IN_PR>Value).
message
combine ("Reading comparison data file: cdata.dat").
read "cdata.dat",
COMPARISON DATA, COMPARISON DATA (Parameter, Value).

find anosalies = true.
§
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types:

Relation Type: sqi

(proportional, inverse proportional).
:ttributes:

reading files: truth.

GCFile: str.

SCFile: str.

VLFile: str.

TDPile: str.
% CDFile: str.

classes:

QONPONENT:
attributes:

Nape: str
{explain: "The name of the component"}.

ID: str

{explain: "The identification of the actual component, e.q. serial number").

\ If ID = "™ check the 'Is Part Of’' Component!
\ Type: sql
\ (pump, turbine, pipe, valve, burmer, sensor).
State: sql
(Assumed Good, Suspected, Known faulty, Known Good, Exonerated)
[default: Assumed Good].

Is Part Of: str
[default: "none")
{explain: "Name of component this one is a part of"}.

Is Composed Of: str
{default: ")
{explain: "List of components of this component"}.
t
endclass.

ABSTRACT COMPONENT: [inherits: COMPONENT]
attributes:
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Function: str.
endclass.
CONTROLLER: [inherits: COMPONENT]
attributes:
Controlled Parameter: str.
Actuated Parameter: str.
Actuation Limit High: real.
Actuation Limit Low: real.
Relation: Relation Type
{explain:
mproportional: if actuation goes up, so does the controlled value"}.
t
endclass.

THERHO_COHPONENT: [inherits: COMPONENT |
attributes:

Nedium: sqgl
(LOX, Liquid Fuel, Partially Burned Fuel, Burnmed Gas).

Nedium Input: str
(explain: "The name of the component attached to the input").

Nedium Output: str
{explain: "The name of the component attached to the output"}.

Nedium Input Semsor: str
{explain: "The name of a semsor at the input {or a list of names)"}.

Kedium Output Sensor: str
{explain: "The name of a sensor at the output (or a list of names)"}.

Internal Semsor: str
{explain: "The name of an internal semsor"}.

H
endclass.
SENSOR: [inherits: COMPONENT]
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attributes:

Component Name: str
{explain: "The name of the nearest component"}.

Location: sql
(Inside, Medium Input, Medium Output, Emergy Input, Emergy Output)
{explain: "Location relative to the component®}.

Parameter Type: sql
(Tewperature, Pressure, Flow Rate, Valve Position).

Parameter Name: str
{explain: "The name of the measured parameter").

Current Value: real.

Sensor Type: sqgl
(Single, Redundant, Average)
{explain: "An 'average’ sensor averages the readings",
"from two or more 'redundant’ sensors").

Average Sensor Name: str
{explain: "The name of the averaging sensor if this is a redundant semsor"}.
t

endclass.

TURBO_PUNP: {inherits: ABSTRACT COMPONENT]
attributes:

Run Time: int

{explain: "Number of seconds it has run"}.
§

endclass.

MANIFOLD: [inhetits: THERNO_COMPONENT |
attributes:

Nusber Of Inputs: int.

Number Of Outputs: int.

endclass.

ENERGY_CONV_COMP: [inherits: THERMO_COMPONENT)
attributes:
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Efficiency: real.

Pover Coupled To: str

{explain: "The name of the component which is coupled to this onme"}.

Pover Direction: sql
(In, Out)
{explain: "In means energy is transferred to the medium,",
"Out the other way").

Pover Result: str _
{explain: "The quantity which is affected by the power imput"}.

\ e.q. for a pump this is the pressure difference!
Coupling Semsor: str

{explain: "A sensor which measures the energy coupling mechanisa").

$

endclass.

PUNP: [inherits: ENERGY CONV_COMP]
endclass.

TURBINE: [inherits: ENERGY_CONV_COMP]
endclass. ‘

GAS_TURBINE: [inberits: TURBINE]
endclass.

HYDRAULIC TURBINE: [inherits: TURBINE]
endclass.

PIPE: [inherits: THERMO COMPONENT]
attributes:

Normal Pressure Drop: real.

endclass.
BURNER: [inherits: THERMO COMPONENT]
endclass.

VALVE: [inherits: ENERGY CONV_CONP]
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endclass.

FILE:
attributes:

Name: str.

Type: sql
(general configuration, specific confiquration, variation limits,
test data, comparison data).

Comparison Type: sql
(none, previous test, average data, tvo sigma limit, absolute limit).
t

endclass.
\ file names are read from BB

TEST DATA:
attributes:

Parameter: str
{explain: "Name of the parameter").

Value: real
{explain: "Value of the parameter").

Interesting: sql (yes, no)
[default: no]

{explain: "yes: if the value is useful for diagnosis").
¢

endclass.

COMPARISON DATA:
attributes:

Parameter: str
{explain: "Name of the parameter").

Value: real
{explain: "Value of the parameter").
endclass.

VARIATION LINITS:
attributes:

Parameter: str.
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Sensor: str
{explain: "The sensor which measures the parameter").

Normal Variation: real

{explain: "Absolute value variation which is still considered normal").

Small Anomaly: real
{explain: "Limit for a deviation considered small").

Nedium Anomaly: real
{explain: "A larger deviation will be considered large"}.
¢

endclass.
H
rules:

find general configquration Pile:
f:PILE
if
f > Type = general confiquration
then
GCPile = f>Name.
endif.

find specific confiquration File:

f:PILE
if
f > Type = specific confiquration
then
SCPile = f>Name,
endif.

find var lim File:

f:FILE
if
f > Type = variation limits
then
VLFile = f>Name.
endif.

find test data File:

f:FILE
if

f > Type = test data
then

TDFile = f>Name.
endif.
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find comparison data File:
f:FILE
if
f > Type = comparison data
then
(DFile = f>Name.
endif,
$
demons:

act demon:
vhen
reading files = true
then
nessage
combine ("Reading general configuration file: ", GCFile).
read GCFile,
PUNP, PUNP (Name, Is Part Of, Is Composed Of,
Nedium, Nedium Input, Medium Output,
Nedium Input Sensor, Medium Output Senmsor,
Internal Sensor, Efficiency, Pover Coupled To,
Power Direction, Coupling Sensor),
GAS_TURBINE, GAS_TURBINE (Name, Is Part Of, Is Composed Of,
Nedium, Nedium Input, Nedium Output,
Nedium Input Sensor, Medium Output Semsor,
Internal Sensor, Efficiency, Pover Coupled To,
Pover Direction, Coupling Sensor),
HYDRAULIC_TURBINE,
HYDRAULIC_TURBINE (Name, Is Part Of, Is Composed Of,
Nedium, Nedium Input, Nedium Output,
Nedium Input Sensor, Medium Output Semsor,
Internal Semsor, Efficiency, Pover Coupled To,
Pover Direction, Coupling Semsor),
TURBO PUNP, TURBO PUNP (Name, Is Part Of, Is Composed Of, Function),
PIPE, PIPE (Name, Is Part Of, Is Composed Of,
Nedium, Nedium Input, Medium Output,
Nedium Input Semsor, Medium Output Semsor,
Internal Sensor, Mormal Pressure Drop),
MANIFOLD, MANIPOLD (Name, Is Part Of, Is Composed Of,
Nedium, Nedium Input, Nedium Output,
Nedium Input Semsor, Medium Output Sensor,
Internal Sensor, Number Of Inputs, Wumber Of Outputs),
SENSOR, SENSOR (Name, Is Part Of, Is Composed Of,
Component Name, Location, Parameter Type,
Parameter Name, Semsor Type, Average Sensor Name),
BURNER, BURNER (Name, Is Part Of, Is Composed Of,
Nedium, Nedium Input, Medium Output,
Medium Input Semsor, Medium Output Semsor,
Internal Senmsor),
VALVE, VALVE (Name, Is Part Of, Is Composed Of,
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Medium, Medium Input, Medium Output,
Nedium Input Sensor, Nedium Output Sensor,
Internal Sensor, Efficiency, Power Coupled To,
Pover Direction, Coupling Sensor),
CONTROLLER, CONTROLLER (Name, Controlled Parameter,
Actuated Parameter).
\ message combine ("GConf: PUMP Name: ", PUMP:LPFP>Name).
pessage
combine ("Reading specific confiquration file: ", SCFile).
read SCFile,
TURBO PUNP (ID, Run Time).
\ message combine ("SConf: TURBO_PUMP ID: ", TURBO_PUNP:LPFTP>ID).
pessage
combine ("Reading variation limit file: ", VLFile).
read VLFile,
VARIATION LIKITS, VARIATION LIMITS (Parameter, Sensor,
Normal Variation, Small Anomaly, Medium Anomaly).
\ message combine ("VLimit: LPFP_FUEL_IN PR n var: ",
\ VARIATION LINITS:LPFP_ FUEL IN PR)Norlal Variation).
pessage
combine ("Reading test data file: ", TDFile).
\ the data files may later be replaced by rav data files and read
\ by a C function!
read TDFile,
TEST DATA, TEST DATA (Parameter, Value).
\ message combine ("Data: Value: ", TEST DATA:LPFP_FUEL IN_PR>Value).
pessage
combine ("Reading comparison data file: ", CDFile).
read CDFile,
COMPARISON_DATA, COMPARISON_DATA (Paraleter, Value).
\ message combine ("CData: Value: ", COMPARISON DATA:LPFP_FUEL IN PR>Value).

break.
endvhen.
$
actions:

pessage "These actions will not be used".

addmember FILE, "filel®, "file2", "file3", "filed”, "files".
FILE:filel>Type = general confiquration.

PILE:filel>Name = "gconf.dat".

FILE:filel>Comparison Type = none.

PILE:file2>Name = "sconf.dat".
FILE:file2>Type = specific confiquration.
PILE:file2>Comparison Type = none.

FILE:file3>Type = variation limits.
FILE:file3>Name = "dvarlm.dat".
PILE:file3>Comparison Type = none.
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FILE:file4>Type = test data.
FILE:file4>Name = "tdata.dat".
FILE:file4>Comparison Type = none.

FILE:fileS>Type = comparison data.

PILE:file5>Name = "cdata.dat".

FILE:fileS>Comparison Type = previous test.
reading files = true.

t
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\ KB to create strateqy
constants:
\ The following constants are used for messages in the actions section.

welcome:
ne

[
"Welcome to EDIS.",

banner:
"unuuuﬁnnnnuunnuuuttttttuﬁmnunnntuuntnn,

§
attributes:

find task: sql (done, cannot find).
$

classes:

TASK:
attributes:
time: int.

priority: int.

task name: str.
knovwledge source: str.

H
endclass.

REQUEST:
attributes:

boqus: int.
3
endclass.

OFFER:
attributes:

bogus: int.

% endclass.
$
rules:

Create tasks:
if
true
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then
find task = done.
endif.

H
demons:
D1:
vhen
find task = done
then

addmember TASK, "t1", "t2", "7, "t4", "5", “te".

TASK:t1 > time = 1.

TASK:t1 > priority = 50.

TASK:t1 > task name = "greet user".
TASK:t1 > knovledge source = ™user_IF1".
TASK:t4 > time = 1.

TASK:t4 > priority = 47.

TASK:t4 > task name = "get file name".
TASK:t4 > knovledge source = "user IF2".
TASK:t3 > time = 1.

TASK:t3 > priority = 45.

TASK:t3 > task name = "read data files".
TASK:t3 > knovledge source = "file reader".
TASK:t5 > time = 1.

TASK:t5 > priority = 40.

TASK:t5 > task name = "find anomalies".

TASK:t5 > knovledge source = "data analyzer".

TASK:t6 > time = 1.
TASK:t6 > priority = 35.
TASK:t6 > task name = "diagnose”.

TASK:t6 > knowledge source = "diagnostician”.

TASK:t2 > time = 1.

TASK:t2 > priority = 10.

TASK:t2 > task name = "EXIT".

TASK:t2 > knowledge source = "none".
endvhen.

$
actions:
message banner,
velcome,
banner.
L
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